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Abstract

This paper presents the principles for design of
autonomous systems whose behavior is based on models
that support the various tasks that must be performed. We
propose a model-based architecture aimed at reducing the
computational demands required to integrate high level
symbolic models with low level dynamic models. Model
construction methods are illustrated to outfit such an
architecture with the models needed to meet given objectives.

1. Introduction

Inrelligent conrrol is viewed as a new paradigm for
solving control problems [1]. Its relatively narrow
interpretation of the "control problem" does not include for
example, the control needed by a system to diagnose and
repair itself after significant insults to its physical structure.
However, requiring greater degrees of autonomy from a
system forces a more expanded view. To achieve autonomy,
artificial intelligence is a one means to this end.

Although criteria for artificial intelligence[3,4] implicitly
include autonomy, robotics research is realizing that
autonomy requires the integration of Al decision making
components together with perception and action components
[5).  To include such diverse systems as self-operating
factories, and telerobotic laboratories along with autoncmous
land and space vehicles in the autonomy umbrella, we
employ a definition {7}

Autonomy is the ability to funcrion as an independent
unit or element over an extended period of time,
performing a variety of actions necessary to achieve
pre-designated objectives while responding to stimuli
produced by integrally contained sensors.

Saridis {8] developed a three layer hierarchy (execution,
coordination and management) for intelligent control which
is supposed to reflect increasing intelligence with decreasing
precision. Antsaklis er al. [2] refine the hierarchy to an
arbitrary number of layers, depending on the particular
application. The coupling of control and information at
various layers characterizes the framework recently proposed
by Albus [9,10,11]. Albus elaborates an architecture of
seven levels, each of which has its own Task Decomposition
and Execution, Sensory Processing, World Model, Global
Memory, and Value Judgement components. Components
at one levei commumcate with each other and with
corresponding components at higher and lower levels. The
Albus architecture is the most general and elaborate attempt
to integrate perception, decision and action to achieve
inteiligence/autonomy. However, it leaves many details
unspecified, particularly of interest here, the role of models.

In the proposed model-based archirecture, knowledge is
encapsulated in the form of models that are employed at the
various control layers to support the predefined system
objectives. It recognizes that an autonomous system must
maintain models in a variety of formalisms and at various
levels of abstraction. Lower control layers are more likely to
employ conventional differential equation models with
symbolic models more prevalent at higher layers. A key
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requirement is the systematic development and integration of
dynamic and symbolic models at the different layers. In this
way, traditional control theory can be interfaced with Al
techniques.

An autonomous system could in principle, base various
functional aspects such as planning, operation, diagnosis,
and other activities on a single comprehensive model of its
environment. However, such a model would be extremely
unwieldy to develop and lead to intractable computations in
practice. Instead, our architecture employs a multiplicity of
partial models to support system objectives. As indicated,
such models differ in level of abstraction and in formalism.
The partial models, being oriented to specific objectives,
should be easier to develop and computationally tractable.
However, this approach leads to sets of overlapping and
redundant representations. Concepts and tools are needed to
organize such representation into a coherent whole.
Structure and behavior preserving morphisms from model
theory[12,13,14] can connect models at different levels of
abstraction so that they can be developed to be consistent
with each other and can be consistently modified. An
organized model base enables the agent to deal with the
multiplicity of objects and situations in its environment and
to link its high level plans with its actual low level actions
through well-defined morphism mappings [15].

2. System Entity Structure / Model Base Concept

The System Entity Structure/Model Base (SES/MB)
framework was proposed by Zeigler [14] as a step toward
marring the dynamic-based formalism of simulation with the
symbolic formalism of Al It consists of two components: a
system entity structure and model base. 'The system entity
structure, declarative in character |13,14], represents a
knowledge of decomposition, component taxonomies, and
coupling specification and constraints. The model base
contains models which are procedural in character,
expressed in dynamic and symbolic formalisms. The enrities
of entity structure refer to conceptual components of reality
for which models may reside in the model base. Also
associated with entities are slots for attribute knowledge
representation. An entity may have several aspects, each
denoting a decomposition and therefore having several
entities. Associated with an aspect is coupling information
needed to interconnect the entities of that aspect. An entity
may also have several specialization, each representing a
classification of the possible variants of the entity.

One application of the SES/MB framework is to the
design of systems. Here the SES serves as a compact
knowledge representation scheme of organizing and
generating the possible configurations of a system to be
designed. To generate a candidate design we use a process
called pruning which reduces the SES to a so-called pruned
entity structure(PES). Such structures are derived from the
governing structure by a process of selecting from
alternatives where ever such choices are presented. Not all
choice maybe selected independently. Once some alternatives
are chosen, some options are closed and others are enabled.
Moreover, rule may be associated with the entity structure
which further reduce the set of configurations that must be
considered. In the model-based architecture of high



autonomy systems, the pruning is a initial planning process
so that the sequenced/planned model can be selected.

As shown in Figure 1, pruned entity structure are stored
along with the SES in files forming the entity structure base.

Hierarchical simulation models may be constructed by
applying the rransform function to pruned entity structures in
working memory. As it traverse the pruned entity structure,
transform calls upon a retrievals process to search for a
model of the current entity. If one is found, it is used and
transformation of the entity subtree is aborted. Rerrieve
looks for a model first in working memory. As it fraverses
the pruned entity structure, transform calls upon a retrieval
process to search for a model of the current entity.  If one
is found, it is used and transformation of the entity subtree is
aborted. Rerrieve looks for a model first in working
memory. If no model is found in working memory, the
retrieve procedure searches through model definition files,
and finally, provided that the entity is a leaf, in pruned entity
structure files. A new incarnation of the rransform process
is spawned to construct the leaf model in the last case. Once
this construction is complete, the main zransform process is
resumed. The result of a transformation is a model
expressed in an underlying simulation language such as
DEVS-Scheme [14] which is ready to be simulated and
evaluated relative to the modeler's objective.  The fact that
the transform process can look for previously developed
pruned entity structures, in addition to basic model files, has
an important consequence for reusability.

Thus, the SES/MB framework provides an ability to
develop model-based design of high autonomy systems. It
can supports:

1) multiplicity of partial models to support system objectives
(multifacetted modelling).

2) integration of dynamic and symbolic models at different
layer (hierarchical architecture).

3) multi-abstraction to integrate related models (system
morphism).

4) selection/retrieval of initial/changed planning models
(pruning and reusability).

SYSTEIT ERTITY STRUCTURE BASE

FL L T
entity prune
structures and
save

pruned
entity
structures

v

working

model
structures memory

Figure 1. The System Entity Structure/Mode! Base
(SES/MB) Environment

3. Functional Aspects of High Autonomy System

With valid models [12], an autonomous system is able to
manage various tasks such as planning, operation,
diagnosis, and error recovery to deal with complex
objectives. Approaches to these aspects have been
developed in each research field so that there are many
overlaps as well as discrepancies between each aspect. In
an integrated system, such aspects cannot be considered
independently.  For example, planning requires execution,
and diagnosis is activated only when abnormalities are
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detected during execution.
for integration.

Figure 2 shows an framework
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Figure 2. Characteristics of Functional Aspects

Planning is defined as "Reasoning how to achieve given
goal.” It employs a suitable model to map from initial state
(S;) and goal state (S,) to a sequence of states (S;, S1, S2,..,
S,) and associated commands within a normal operation
envelope. Once a plan is setup, it should be faithfully
executed. "Execution with verification” maps from the input
command and its expected normal responses to success/fail.
As long as execution is successful, it continues until
achieving the goal.  But, if it fails (reaching a state Sy), the
diagnosis function should be activated. Diagnosis is defined
as "Discovering the cause of the failure”. It maps from
observed symptoms to reachable abnormalities. Having
identified the causes, the autonomous system should be able
to recover the faulty state of real system or model to normal
state.  The error recovery is defined as "Knowing how to
characterize the problem”. It maps from causes to new
goal (S;). Note that, in contrast with planning/operation
functions, the diagnosis/recover functions are activated only
when the abnormality is detected.

3.1 Planning Function

There are two major approaches in task planning: one
considers planning as searching and the other considers
planning as a representation problem.  The former deals
with the initial planning problem where no prior experience
is employed.  In contrast, the latter (case-based planning)
views planning as remembering, i.e., retrieving and
modifying existing plans for new problems [16].

Figure 3 illustrates our planning approach to build
autonomous execution structures, where planning is viewed
as a pruning operation which generates a candidate structure.
In our model-based approach, planning is achieved by
pruning a System Entity Structure (SES) to select Pruned
Entity Structures (PESs) from alternatives [17]. The PESs
are in turn transformed into simulation model! structures for
execution.  The non-experienced initial planning, which
means the pruning of SES alternatives, can be achieved by
using a rule-based approach.  Every action (or state) node
has several rules associated with system constraints, pre-
conditions, and post-conditions. The resultant PES is
saved with an index into an entity structure base (ENBASE)
for reuse.  In contrast with non-experienced planning, the
experienced planning is done by retrieving PESs from the
ENBASE. The planner first retrieves a plan that might be
used to achieve a given goal, or generates a new trial plan
from partial plans if no existing plan is suitable.  This
candidate plan is then projected forward via simulation by
attaching component models in a model base (MBASE),
where low level planning is embeded.
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Figure 3. Planning Concept: Viewing Planning as Pruning

Once an execution model is synthesized, a lower level
planner produces a goal table that is a list of 4-tuples: state,
goal, command, and time-to-reach-goal.  From these, a
time optimal path from an initial state to a goal state is readily
derived.  Since discrete event models embody timing it is
natural to base optimal sequencing on predicted execution
time. The planner works by developing paths backward
from the goal until the given initial states (possible starting
states of the given system) are reachedf14,18].

3.2 Operation Function

The event-based control paradigm realizes the intelligent
control by employing a discrete eventistic form of control
logic represented by DEVS formalism {18].  In this control
paradigm, the controller expects to receive confirming sensor
responses to its control commands within definite time
windows determined by its external model of the system
under control.  An essential advaritage of the event-based
operation is that the error messages it issues <an bear
important information for diagnostic purposes.  Figure 4
depicts the event-based operation concept using time
window.

too-early | window
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Figure 4. Event-based Control Concept

The operational model used by event-based operation has
a state transition table that is abstracted from more detailed
model. The state transition table keeps a knowledge of a
state, input, next state, output, next-time-advance (lower
bound), and its window time. The window associated with
a state is determined by bracketing the time-advance values
of all transitions associated with the corresponding states in
its lower models.

The operator obtains information from the planner and
expected responses times and windows, using the state table
of its operational model. = The operator issues these
commands to the lower level operator or lowest level
controlled device. When proper response signals are
received the operator causes the model to advance to the next
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state corresponding to the one in which the device is
supposed to be. Thus if the model is valid and operation
proceeds normally, the underlying homomorphic relation is
maintained between the model and lower levels. The
operator ceases interacting with the device as soon as any
discrepancy, such as roo-early or too-late, occurs in this
relationship and calls on a diagnoser to investigate it.

3.3 Diagnosis Function

Diagnosis is performed by local and global diagnosers,
to find single or muitiple faults using knowledge of structure
and behavior. By local diagnosis we mean the diagnostic
description of a component model: when detected the
symptom, the behavioral diagnoser can discover the fault
which is occurred within currently activating mode! unit.
ane the controller has detected a sensor response
discrepancy, the diagnoser is activated.  Data associated
with the discrepancy, such as the state in which it occurred,
and its timing, are also passed on to the local diagnoser.
From such data, as well as which information it can gather
from auxiliary sensors, the local diagnoser tries to discover
the fault that occurred. The diagnostic model is an inversion
process going from externai effects to underlying causes.

If the local diagnosis fails, the global (higher level)
diagnoser is activated. It refers its possible diagnoses in the
diagnostic model and verifies whether faults have actually
occuried in the indicated lower models. The global
diagnostic model has a cause-effect table which is obtained
by symbolic simulation to generate all causal trajectories of
component models by marking those that reach states
exhibiting the detected symptom.  More precisely, it first
builds symbolic simulation environment, i.e. coliect its
children modets and attach corresponding fault generators,
and then simulate to find the actual faults,.  More details on
deep diagnosis using symbolic simulation are in {19].

4. Model-based Shallow/I3ecp Reasoning

To manage and judge such multi-functional aspects,
autonomous system should have shallow/deep reasoning
capabilities. The reascning methods can be built depending
on functional aspects, levels of hierarchy, and system
objectives/requirements. Thus, it is important to have
coherent methodologies that can support shallow/deep
reasoning capabilities, and systematic integration.

Reasoning can be viewed as generating a cause-effect
table. In our model-based approach, the shallow reasoning
is about atomic level whereas the deep reasoning is about
coupled level.  Figure 5 represents the shallow reasoning
approach where the cause-effect table can be directly
obtained by associating each model (depending on parameter
range) with resultant output {Symptom).  In contrast, the
deep reasoning approach shown in Figure 6 uses symbolic
simulation to generate every possible trajectories which
indicate the causal relationships between component models.
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Figure 5. Model-based Shallow Reasoning
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Figure 6. Model-based Deep Reasoning
5. Intelligent Unit Architecture

The functions described in a previous sectivii have to be
coupled within an unit in order to interact each other.  We
use term "Intelligent Unit” as a smallest unit for all functions
(Figure 7).  Each functional block is developed based on
the endomorphism concept using engine-based modelling
methodology as discussed next.
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Figure 7. Structure of an Intelligent Linit.
5.1 Endomorphic Modeliing Concept

Endomorphism refers to the existence of a homomorphism
from an object to a sub-object within it, the part (sub-object)
then being a model of the whole [14].  As illustrated in
Figure 8, in order to control an object, an autonomy system
needs a corresponding model of the object to determine the
particular action to take. The internal model used by
intelligent unit and external model are related by abstraction,
i.e., some form of homomorphic relation.  The inference
engine asks to its internal model about the necessary
information for activating real system (external model).
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apstract:on
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tnternal
Model
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Figure 8. Endomorphic System Structure
5.2 Engine-based Design Methodologies

Typical expert systems comprise a domain-independent
inference engine and domain-dependent knowledge base.
The inference engine examines existing knowledge base
decides the order in which inference made.  The engine-
based modelling approach provides a clear separation
between domain-dependent mode! base and domain-
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independent irference engine so that it allows an automatic
generation uf model base preserving homomorphism.
Figure 9 shows an engine-based modelling concept and a
family of functional aspects realized by engine-based
medelling concept.
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Figure 9. Engine-based Modelling Concept
6. Hierarchical Development of Intelligent Tnits

To cope with a complex problem, the high autonomy
system requires multiple intelligent units that are coupled in
hierarchical fashion, where each functional models of an
intelligent unit in the hierarchy must have a valid abstraction
relations each other.  Figure 10 illustrates an autonomous
system development based on hierarchical abstraction
relationships which is discussed next.

Mode! base developing methods depend on levels of
hierarchy: coupled level and atomic level.  The former is
about the structural knowledge whereas the latter is about the
behavioral knowledge. The major constraints in constructing
coupled level models are system objectives, requirements,
and resource availabilities, etc.  In contrast, atomic level
models are constructed depending on dynamic constraints
such as time. By integrating every functional aspects into
an intelligent unit and by coupling every intelligent unit
coherently. the model-based architecture of autonomous
system can be built.

6.1. Hierarchical Abstraction Process

The abstraction is based on homomorphic preservation
of the equipment input-output behavior where inputs are
operation commands to the equipment and outputs are
responses of finite-state sensors attached to the equipment to
observe its state.  Selection of controls and sensors must
reflect the operation objectives.  The discrete event model
abstracts incremental micro-state transitions from the
continuous model and replaces them by nominal times taken
for macro-state transitions (which corresponding to crossing
of sensor thresholds). And also discrete event model
abstracts/composites its children models.

In our approach, we have multiple abstraction related
models. Figure 11 represents an abstraction related models.
M is a continuous state model of the system being controlled
(the most refined model considered for it). Then the models
are related by abstraction, i.e., some form of homomorphic
relation.  MB is a discrete event model derived from M, and
PMB, OMB. DMB. and RMB are different abstraction
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Figure 10. High Autonomy System Development Based on
Hierarchical Abstraction

models of MB. Each abstraction is governed by an
underlying morphism. MB serves as the external model of
each equipment, whereas PMB, OMB, DMB, and RMB
serve as the internal models of intelligent agent.

A group of PMB, OMB, DMB, and RMB can be again
abstracted/ composited into higher coupled level models to
represent more global state transitions (used by higher level
agents). In this way, the higher level models use their own
models, which are abstracted/composited from the lower
level models, to control their sub-models.
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Figure 11. Abstraction Related Models
6.2. Autonomous System Generation

The overall methodology of the autonomous system
generation in a model-based simulation environment is in
Figure 12.  The task formulation module receives an
objective. It then retrieves SES from ENBASE and
generates the plan structure by using planning part of SES or
partitioned PESs. By pruning execution part of SES using
plan structure, we have a planned execution structure and
finally simulation structure by synthesizing corresponding
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models in MBASE, where models can be exist in advance or
generated automatically.
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Figure 12. Autonomous System Generation
Methodology

Once execution (simulation) is done, the resultant model
states and/or planed structure are updated into MBASE
and/or ENBASE for future reuse, respectively.

Note that the plan structure and execution structure can
be implemented differently depending on the application
domain, but conceptually it represent same structure. We
now show the autonomous system generation procedure in
more methodological way.

Phase I: Plan Generation

Once the basic environment is built, the next phase is the
planning structure generation. When receiving given goal
command, planning structure is generated in top-down
fashion (task decomposrition) as shown in Figure 13(a).

Phase II: Model Construction

Next phase is model base construction illustrated in
Figure 13(b), where the necessary models can be retrieved
from MBASE or automatically generated from the lower
level models.  This multi-layered hierarchical model base
generation can be done in bottom-up fashion (model
abstraction).  The resultant structure represents the domain
dependent knowledge base structure.

Phase III: Engine Attachment/Integration

By attaching domain independent engines such as
planner, operator, diagnoser, and recoverer which is able to
control corresponding models, we have multi-agent
structure.  Now by coupling those agents, we can obtain
autonomous system architecture shown in Figure 13(c).
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Figure 13. Autonomous System Generation Procedure
7. Conclusions

Building on the basis of the SES/MB framework as
implemented in DEVS-Scheme, we have extended the ability
of our knowledge/model base tools to support model-based
design of high autonomy system through the ability to build
multi-agent, multi-function, multi-abstraction, multi-level
architecture coherently. The main characteristics of proposed
architecture are as follows:

1. Time-based formalism (DEVS):. provide coherent
integration between symbolic and numeric models.

2. Hierarchical modularity: reusability, testability.

3. Atomic level and coupled level : clear distinction between
behavioral and structural knowledge.

4, Deep reasoning as well as shallow reasoning: powerful
reasoning capability.

5. Endomorphism: homomorphism preserving intelligent
agent design methodology.

6. Engine-based design: domain independent system.

7. Event-based control logic: robustness, reduce sensor
complexity, increase diagnostic capability (timing relation),
integration of symbolic/numeric data.

8. Multi-functional capability: coherent development of
various function to cope with complex problem.

9. Remembering: reusability of experienced structure.

10. Systematic abstraction process (morphism): automatic
generation of knowledge base of each functional aspect.
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