‘917 KACC 1991. 10. 22~24

Approximate Voronoi Diagrams for Planar Geometric Models

Kwan-Hee Lee and Myung-Soo Kim

Department of Computer Science
POSTECH
P.O. Box 125, Pohang 790-600, Korea.
TEL:(0562)-79-2249 FAX:(0562)-79-2299

Abstract

We present an algorithm to approximate the Voronoi diagrams of 2D objects bounded by
algebraic curves. Since the bisector curve for two algebraic curves of degree d can have a
very high algebraic degree of 2 - d%, it is very difficult to compute the exact algebraic curve
equation of Voronoi edge. Thus, we suggest a simple polygonal approximation method. We
first approximate each object by a simple polygon and compute a simplified polygonal Voronoi
diagram for the approximating polygons. Finally, we approximate each monotone polygonal
chain of Voronoi edges with Bezier cubic curve segments using least-square curve fitting.

1 Introduction

Voronoi diagram has many important geometric properties which
have attractrated much research interests in diverse applica-
tion areas such as biology, solid-state physics, pattern recogni-
tion, geography, stock-cutting, wire layout, geometric optimiza-
tion, facilities location, computer graphics, and robotics [7]. In
collision-avoidance robot motion planning, the problem of find-
ing collision-free paths among obstacles can be reduced to a
graph search problem in Voronoi diagram [7]. Voronoi diagram
has been an active research area in computational geometry.
Much of the earlier works have constructed the Voronoi dia-
grams for discrete points. In this simple case, the Voronoi edges
are line segments. There are also many algorithms designed
for a collection of line segments and circular arcs (7], where the
Voronoi edges are conic curves. However, for general algebraic
curve segments the corresponding Voronoi edges many have very
high degree algebraic curves. For example, the bisector curve for
two irreducible algebraic curves of degree d can have degree 2-d*
in the worst case. This means the bisector curve for two sim-
ple conic (resp. cubic) curves may have degree 32 (resp. 162),
which is extremely high for practical applications. For high de-
gree bisector curves, it is also computational quite expensive to
recognize the exact portions of bisector curves which belong to
the Voronoi diagram. Thus, in this paper we suggest a simple
approximation method to compute the Voronoi diagram for 2D
curved objects bounded by algebraic curve segments.

Most of the previous algorithms for Voronoi diagrams are
mainly concerned about designing asymptotically efficient algo-
rithms with optimal time complexity O(nlogn) [6, 7], where n is
the input size. However, it is not straight-forward to implement
these algorithms. The data structures and algorithms even for
the simple case of planar n discrete points are quite involved for
implementation [6]. Further, when the input is given as line seg-
ments and circular arcs, the corresponding Voronoi edges may
have conic curve segments [7]. This fact can be explained by
the following simple observation. When we assume each object
is growing with respect to a certain distance criteria, say Eu-
clidean distance. After time t, each linear edge is translated
towards its normal direction by a distance t, and each vertex

1601

is grown into a circular arc of radius t centered at the vertex.
When we visualize this fact in the zyt-space by lifting each ob-
ject boundary at time ¢ by a vertical distance ¢, each line segment
generates a planar surface patch and a vertex generates a conic
surface patch both making slope n/4 with the zy-plane. Since
each Voronoi edge is defined to be the trace of intersection points
between two such growing object boundaries, each Voronoi edge
is the zy-projection of an intersection curve between two such
planar/conic surface patches in the zyt-space. Thus, it is a conic
plane curve of degree 2.

To make the Voronoi edges as simple line segments, Canny
suggested a simplified Voronoi diagram which grows each polyg-
onal object boundary by a similar polygounal boundary [4]. In
this case, there are only planar surface pathes in the zyt-space
and the intersection curves and their projections are all line seg-
ments. However, polygon vertices with acute inner angles may
generate disconnected Voronoi regions and the corresponding
Voronoi edges may have large deviations from the exact Voronoi
edges under Euclidean metric, see Figure 4. To reduce these
undesirable effects, we round each sharp corner vertex by a con-
vex polygonal arc with line segments with no length and use a
construction method similar to Canny’s simplified Voronoi dia-
gram [4]. The case of Euclidean metric is an extreme case where
each vertex is rounded by a convex polygonal arc with infinitely
many null line segments with no length. Replacing each ver-
tex by such a convex polygonal arc essentially adds many extra

dummy verices and thus increases the vertex inner angles larger.

In this paper, we assume the given objects are all convex.
For non-convex planar curved objects, we can easily compute
their convex hulls in linear time [1]. Our goal of this paper is
to present a simple algorithm which can be implemented quite
easily. Though its worst case time complexity is O(n?), its per-
formance in practical applications can be significantly improved
by adding a reasonable range searching algorithm to detect the
edge pairs which can generate the Voronoi edges. As explained
above, the main idea is to transform the problem of Voronoi
diagram construction to a more general problem of computing
the union of certain polyhedra. Thus, in an application program-
ming environment with a solid modeler, one can easily construct
Voronoi diagrams using this algorithm without struggling with
much hassles of implementing a non-trivial geometric algorithm.

The rest of this paper is as follows. In §2 we briefly review
the equations for bisector curves and their degree complexity.
In §3 we describe the primitive data structures for implementa-
tion. In §4 we present the algorithm to construct an approxi-
mate Voronoi Diagram for planar objects bounded by algebraic
curves. Finally, in §5 we conclude this paper. This algorithm
is implemented on SUN4/330GX Sparc Station using C for the
objects bounded by cubic Bezier curve segments.

2 Bisector Curves

In this section, we analyze the degree complexity of the bisector
curves by deriving their defining equations. Due to the high de-
gree complexity, it seems reasonable to approximate the bisector
curves by polygonal chains or lower degree curves.

2.1 Bisector for an Algebraic Curve

Let C be an algebraic curve defined by an implicit equation
f = 0, then the bisector of C is the set of points which are
equidistant from two different points on C. Suppose p is equidis-
tant from p, and p; on C, i.e., d(p,p1) = d(p, pz) = r for some
r > 0, then the circle of radius with center at p is tangent
to C at p; and p;. Note that p is a singular point of the con-
stant radius offset curve of C with respect to an offset radius r.
The algebraic equation F(z,y,r) = 0 for this offset curve can
be derived from [2]. Since p is a singular point of the curve,
p = (z,y) satisfies F' = F, = F, = 0. By eliminating the vari-
able r from any two of these three equations, we can derive three
algebraic equations S.(F, F;), S,(F, F,), S;(Fy, Fy), where S, is
the Sylvester resultant eliminating the variable ». The bisector
curve of C satisfies these three S, equations simultaneously and
thus the common factor of the three 5,’s. Since F' has algebraic
degree O(d?) and S,’s have degree O(d*), the bisector of C may
have degree O(d*) in the worst case.

2.2 Bisector for Two Algebraic Curves

Let C and D be two different irreducible algebraic curve seg-
ments defined by implicit equations f = 0 and g = 0 respec-
tively, then the bisector of C and D is the set of points which
are equidistant from two different points p; and p; on C and
D respectively. The bisector equation is given by the following
equation. Thus, the bisector can have degree O(d*) in the worst
case.

flzi, ;) =0and py = (21, 11) €C (1)

g(z2,92) = 0 and p2 = (22,42) € D (2)

JeB—fy-aa=0 (3)
9z Ba—gy 02 =0 (4)
of + 8t =af + 6 (5)

3 Data Structures

Each planar curved object has a boundary representation with
edges of algebraic curve segments. Each edge has its begin and
edge points, and its defining implicit and/or parametric equa-
tion(s). Each point is given as a pair of = and y coordinates.
Further, we assume each edge is subdivided into monotone curve
segments by adding singular, inflection, and z and y-extreme
points as extra vertices if necessary.

Monotone curve segment is approximated by a polygonal
chain of line segments. Each line segment is represented in a
data structure with various fields. These include those fields
such as the unique id, the line equation, the vertex coordinates,
a pointer to its corresponding Voronoi edges (vor_seg) and a

1602

‘sc_polygon(simple cﬂﬂl‘ﬂpdn

ows_polygon{ouser polygon)

(a) The Field of Object

end p cone.l_left

Cone

one.l_right

Voronoi edge list

(b) The Field of Line Segment

Jriend.objl Sriend.obj2

Object] Object2

Sriend linel

(c) The Field of Vor_seg and Friend

Figure 1: Data Structures and its Field

pointer to the conic angular region (cone) determined by this line
segment and the two neighboring line segments. The cone struc-
ture is very important because it is the region generated by the
line segment growing towards its normal direction by distance
t at time ¢. Vor_seg (Voronoi segment) is a data structure rep-
resenting a Voronoi edge. It contains the fields for the Voronoi
edge 1id, the starting (stert_t) and ending (end.z) times, and the
Voronoi edge line equation (vline), the starting and ending point
coordinates for the edge (start.p, end_p), and the informations
for the objects generating the Voronoi edge (friend), etc. The
data structure for objects contains additional fields for the in-
ner and outer approximating polygons when each edge of the
object is approximated by line segments within an error bound
€. Figure 1 shows each field of the data structures. The data
structures in C are shown below.

struct line_seg

{
int id;
LineEq line;
Cone cone;
Point *start_p, *end_p;
Vor.seg *vor_seg;
Line_seg *nexzt;

b

struct vor_seg

{
int id;
float start_t, end.t;
LineEq vline;
Point xstart_p, *end.p;
Friend friend;
Vor_seg *next;

h

struct friend

{
Object *obj1, *0bj2;
Line_seg *linel, *line2;

b
struct cone

Vector v_right, v.left;
LineEq I_right, lleft;
float sign;

b

4 Algorithms to Approximate Voronoi Di-
agrams

In this section, we present algorithms to approximate the ex-
act Voronoi diagrams for planar curved objects by simplified
Voronoi diagrams consisting of linear Voronoi edges. In §4.1, we
approximate each curved object by certain simple polygons. In
§4.2, we compute the simplified Voronoi diagrams for the sim-
ple polygons apprcximating the given objects. To improve the
approximation, we subdivide the normal angular region for each
vertex by adding redundant coincident vertices into the same
vertex. We call this operation as vertez cracking and the effect
is the same as rounding each vertex by a convex polygonal arc
of dummy line segments of length zero. In §4.4, we approxi-
mate each monotone polygonal chains of linear Voronoi edges
by Bezier cubic curve segments.

4.1 Related Polygons

The carrier polygon for a planar curved object is the polygon
which is obtained by replacing each curved edge by a line seg-
ment connecting the two adjacent vertices [5}. By adding ©(n?)
extra vertices if necessary, the carrier polygon can always be
made to be simple so that there is no intersection between poly-
gon edges except adjacent edges touching at their common ver-
tex [1, 5]. The characteristic polygon is a simple carrier polygon
which satisfies an additional property, i.e., the region bounded
by each polygon edge and its corresponding curved edge is totally
contained either in the object interior or in the exterior. Further,
the inner (resp. outer) polygon is a simple polygon which is to-
tally contained in (resp. containing) the object. Bajaj and Kim

1603

(D
o5

Figure 2: Inner Polygon of the Curved Object.

(D
(D

@
@

Figure 3: Outer Polygon of the Curved Ob ject.

[1] presented algorithms to construct the characteristic, inner,
and outer polygons for planar curved objects.

In this paper, we consider only the planar curved objects
which are convex. Thus, all the carrier polygons become simple
carrier, characteristic, and inner polygons automatically. Fur-
ther, they can be constructed quite efficiently in linear time. We
can also construct the outer polygon using the tangent lines at
the vertices. We can refine the inner and outer polygons even
further to approximate the given curved object boundary arbi-

trarily closely by adding more extra vertices to the curved edges
if necessary.

4.2 Simplified Voronoi Diagrams

In this section, we present a simple algorithm to construct the
Voronoi diagram for non-overlapping convex polygons. Once we
compute the inner and outer polygons for each convex curved
object, we can approximate the Voronoi diagram of these curved
objects by computing the Voronoi diagram of the corresponding
inner or outer convex polygons. To make the Voronoi edges
constructed to be simple line segments, we can nse Canny’s sim-
plified Voronoi diagram construction to these convex polygons

S

Figure 4: Voronoi Diagram which exists Acute Angle.

{4]. The simplified Voronoi diagram grows each convex poly-
gon by simply translating each polygon boundary side outwards
and constructing a similar larger polygon. However, this method
has the following problems. First, a vertex with acute angle may
grow too fast compared to the growth of its neighboring edges.
Figure 4 shows this problem. In the figure, we can see much
difference between the exact Voronoi diagram and the simpli-
fied Voronoi diagram. Second, by a similar reason there may
appear islands. In Figure 4, the convex object A has two dis-
connected Voronoi regions R; and R;. The disconnedted region
R, is generated since the sharp corner vertex of A grows too
fast. To overcome these problems we use a method called by
vertez-cracking. In this method, we make the angle of a vertex
larger by inserting a convex polygonal arc comsisting of extra
dummy vertices and null edges at the acute vertex. Then, we
can somewhat reduce the undesirable effects of the above two
problems. Figure 5 is the same as Figure 4 except that we have
constructed the corresponding simplified Voronoi diagram after
the vertez-cracking. It contains no islands and further it has
become very close to the exact Voronoi diagram.

We next consider how to compute the bisector line for two
lines defined by the normalized equations ayz + by + ¢y = 0 and
a3z + byy + ¢2 = 0, where a? + b = a3 + b2 = 1. After trans-
lating these lines by distance t towards their normal directions
(a1,5) and (ag,b2) respectively, the translated lines satisfy the
equations a1z + biy+ ¢ —t =0and agz + bay+ 2 —t =0 re-
spectively. The points on the bisector line are the set of points
which satisfy these two line equations simultaneously at some
time t. Thus, the bisector line equation is obtained by eliminat-
ing the time papameter variable ¢ from the above two equations,
ie, (a1 —ag)z + (b1 —ba)y + (c1 —€2) =0

For each edge, the cone of this edge is defined to be the region
bounded by the edge and the two bisector lines for the two outer
angles of the vertices. The cone corresponds to the sweeping area
of the growing edge. A simplified Voronoi edge line segment
generated by the two edges from two distinct polygons is the
same as an exact Voronoi edge. For this edge, there should be
some intersections between the cones of the original edges and
the computed bisector line segment. That is, if there is any non-
empty intersection, the intersection is an exact Voronoi edge. If
not, the two original edges generate no Voronoi edge. A single
edge may generate several different Voronoi edges. When we
compute all the intersections among them and cut away some
redundant parts of them, we can construct a polygonal chain

1604

Figure 5: Voronoi Diagram after Vertex Decompositions.

of Voronoi edge line segments. By “classify and select exact
Voronoi edges” in the following algorithm, we mean the above
process.

procedure construct_Voronoi_diagram(object list,)
begin
{ each object in the object list is a convex polygon. }
{ € is the maximum permissible deviation of
the approximated Voronoi diagram from
the exact Voronoi diagram.}
Select the vertices whose the inside.angle < x/2 and
Mark the vertices and all the lines in objeci_{ist
repeat
{ do vertez-cracking on the Marked vertices
and Mark the corresponding edges. }
vertex_crack(object_list)
for each object in object_list
begin
for each Marked edgel in object
begin
{ when we use an efficient range search
algorithm to detect only the edges
which can actually generate Voronoi
edges, the performance of this algorithm
can be improved significantly }
for each edge2 in the rest object in object_list
begin
compute the bisector line segment between
edgel and edge2
and push it to Voronoi edge stack
error = the approximation error
if error > ¢ then Mark
on both vertices of edgel
else unMark edgel
end for
pop all the edges from the Voronot edge stack,
classify and select the Voronoi edges
end for
end for
until no more Marked vertex left
end procedure

Each Voronoi edge generated by the above procedure has
pointers to the object edges which generate it. Figure 6 shows
a Voronoi diagram constructed from a set of convex polygons.

Figure 6: Voronoi Diagram Constructed from Convex Polygons.

Each Voronoi edge generated by the above procedure has
pointers to the object edges which generate it. Figure 6 shows
a Voronoi diagram constructed from a set of convex polygons.

4.3 Further Refinements

Up to now, we have computed the simplified Voronoi diagram
which approximates the exact Voronoi diagram under Euclidean
metric. The formula for simplified Voronoi edges are explained
in §4.2. In the exact Voronoi diagram, each vertex grows into
a circular arc, but in the simplified Voronoi diagram it grows
into a convex polygonal arc of line segments. Figure 7 shows
the error at a vertex. When un object is grown upto time ¢, the
maximum distance error must occur at a vertex. The distance
between the edge and the extended edge is always t. However,
the distance between the vertex and the extended vertex is ":‘ s
where 28 is the inner angle of two neighboring edges. Thus, the
maximum extension error between the two vertex growings, i.e,
the circular arcs and the convex polygonal arcs, is:

Error = 3 —t =t (35 - 1

This equation means that the error term for a vertex growing
depends on the angle 8 and the time ¢. To get a Voronoi diagram
which has its permissible maximum error within ¢ compared to
the exact Voronoi diagram, we must replace each vertex which

has sharp inner angle into a convex polygonal arc of many null
edges.

4.4 Curve Fitting

The simplified Voronoi diagram algorithm for the inner or outer
polygon yvields a list of Voronoi edge line segments. The chain
of Voronoi edges is a polygonal chain of line segments which
has much difference from the exact Voronoi diagram, especially
when the object boundary is curved. The exact Voronoi edges
for curved objects are very high degree algebraic curves. Thus,
we do curve fittings to the polygonal chains of Voronoi edge line
segments to obtain a Voronoi diagram with a smaller number of
Voronoi edge segments. We do curve fitting, by using the least
squares method. The following is a description of the algorithm.
Figure 9 and Figure 10 show the Voronoi diagram for inner
polygons, and outer polygons respectively.

1605

error

Figure 7: Error in Object Extension.

procedure curve_fit{voronoi_edge_list)
begin
divide voronoi_edge list at each
intersection point of three Voronoi edges
{== see Figure 8}
for each divided voronoi edge list
begin
do curve fit using least squares method

end
end procedure

5 Conclusion

We presented a simple algorithm to compute an approximate
Voronoi diagram for planer curved objects. Each curved object
is first approximated by inner and outer polygons, and the sim-
plified Voronoi diagrams are constructed for these convex poly-
gons. Though the simplified Voronoi diagram has an important
advantage of having only simple line segments, there are some
undesirable effects caused by sharp corner with acute inner an-
gles. To eliminate these undesirable effects, we use a method
called vertez-cracking which essentially rounds each acute cor-
ner vertex with a convex polygonal arc of dummy null edges.
The simplified Voronoi diagram constructed for these modified
simple polygons approximate the exact Voronoj diagram more
closely.

References

[1] Bajaj, C., and Kim, M.-S., (1988), “Algorithms for Pla-
nar Geometric Models,” Proceedings of the 15th Interna-
tional Colloguium on Automata, Languages and Program-
ming (ICALP 88), Tampere, Finland, Lecture Notes in
Computer Science, Springer-Verlag, pp. 67-81.

2] Bajaj, C., and Kim, M.-S., (1989), “Generation of Con-
J

figuration Space Obstacles: The Case of Moving Algebraic
Curves,” Algorithmica, Vol. 4, No. 2, pp. 157-172.

[3] Bajaj, C., and Kim, M.-S., (1990), “Convex Hulls of Ob-
jects Bounded by Algebraic Curves,” to appear in Algorith-
mica.

(4

Canny, J., (1987), The Complezity of Robot Motion Plan-
ning, The MIT press, pp. 128-147.

Figure 8: Dividing Point : Point Marked.
[5} Dobkin, D., Souvaine, D., and Van Wyk, C., (1988), “De-
composition and Intersection of Simple Splinegons,” Algo-
rithmica, Vol. 3, pp. 473-486.

(6

Preparata, F., and Shamos, M., (1985), Computational Ge-
ometry: An Introduction, Springer-Verlag, New York.

[7] Yap, C., (1987), “An O(nlogn) Algorithm for the Voronoi

Diagram of a Set of Simple Curve Segments,” Discrete and
Computational Geometry, Vol. 2, No. 4, 1987, pp. 365-393.

e

Figure 9: Inner Voronoi Diagram with Curve Fitting,

OO
&

Figure 10: Outer Voronoi Diagram with Curve Fitting.

1606

