‘97 KACC 1991. 10. 22~24

Robust Plane Sweep Algorithm for Planar Curve Segments

In-Kwon Lee, Hwan-Yong Lee, and Myung-Soo Kim

Department of Computer Science, POSTECH

Abstract

Plane sweep is a general method in computational geometry. There
are many efficient theoretical algorithms designed using plane sweep
technique. However, their practical implementations are still suffer-
ing from the topological inconsistencies resulting from the numerical
errors in geometric computations with finite-precision arithmetic. In
this paper, we suggest new implementation techniques for the plane
sweep algorithms to resolve the topological inconsistencies and con-
struct the planar object boundaries from given input curve segments.

1 Introduction

Plane sweep is a general method in computational geometry. A vari-
ant of this method known as scan-line algorithm in computer graphics
has been extensively used in the fundamental computer graphics algo-
rithms for hidden-line elimination and polygon-filling. The basic idea
is sweeping a vertical (resp. horizontal) line in the plane from left to
right (resp. from bottom to top) and examining the status change of
geometric entities lying on the current sweep line. As the sweep line
moves, the corresponding cross-sections change their positions and
shapes dynamically. At certain discrete instances, the topological ar-
rangement of these cross sections changes. For example, in Figure 1,
the relative position for the intersection points of C and D on the
current sweep line L switches as L passes across the curve intersection
point p. In-between these events the relative positions are the same.
By scheduling these events for status changes correctly in advance
and further taking appropriate actions to record the corresponding
status chaunge at each scheduied event, one can determine the correct
topological arrangement of geometric entities 1n the plane.

There are potentially many geometric reasoning problems in a
plane which can be solved using this general method. These include
line and curve segment intersection, hidden line elimination, poly-
gon filling, boolean cperations (union, intersection, difference) for
2D regions, etc. The plane sweep algorithm solves these problems es-
sentially by computing the line and curve contour intersections and
additionally doing problem-specific geometric reasonings about the
regions bounded by these contours. In this paper, we consider the
problem of constructing object boundaries using plane sweep, from a
set of planar curve segments representing geometric constraints.

Many authors in computational geometry have designed efficient
intersection algorithms using plane sweep technique. For example,
Bently and Ottmann [1] designed an O((n + k) log n) plane sweep al-
gorithm to compute the line segment intersections in a plane, where
k is the number of intersections. Chazelle and Edelsbrunner [2] re-
cently improved this result to an optimal O(nlogn + k) algorithm.
For the curved case, Johnstone and Goodrich [4] presented an al-
gorithm to compute the intersections between two plane algebraic
curve segments using plane sweep technique. This algorithm can
also compute the intersections among any number of plane algebraic
curve segments. These algorithms assume the intersection points can
be computed exactly, i.e., the topological arrangement of arbitrarily
close intersection points can be determined correctly. For intersect-
ing line segments with rational coefficient equations, this requirement
is relatively easy to satisfy since one can compute each intersection
point exactly as a pair of rational numbers by doing only a few simple
rational arithmetic with no errors. For intersecting plane algebraic
curve segments, Johnstone and Goodrich [4] guarantee the exactness
of curve intersections by using arbitrarily small tracing steps deter-
mined by the Gap theorem. However, in some degenerate cases, it
may require very high precision arithmetic to satisfy this exactness
condition.

To implement practically efficient plane sweep algorithm for pla-
nar algebraic curve segments, we have to devise a new mechanism
which can enforce robustness to the algorithm using finite precision

arithmetic for geometric computations. For this purpose, we present
two techniques called multiple intersection merging and intersection
splitting which can guarantee certain robustness conditions during
the execution of algorithm. Our approach is somewhat similar to
the data normalization technique of Milenkovic [7] which can guar-
antee the robustness of determining the topological arrangement of
line segments in a plane using finite-precision arithmetic. However,
there are many differences between our approach and Milenkovic’s
since algebraic curve segments have more general properties than
line segments.

The rest of this paper is organized as follows. In §2, we describe
the data structures for implementing the plane sweep algorithm to
be discussed in this paper. In §3, we present a simple plane sweep
(5PS) algorithm under the basic assumption that there are no mul-
tiple intersections or no (almost) overlapping edges among the given
input curve segments. In §4, the method of uncertainty modeling is
described. In §5, a robust plane sweep algorithm (RPS ) which can
resolve the topological inconsistencies from numerical errors in geo-
metric computations are described. Finally, in §6 we conclude this
paper.

2 Data Structures

Each object has a boundary representation with edges of algebraic
curve segments. There is one outer loop of directed edges in counter—
clockwise order and & inner loops of edges in clockwise order, where k
is the number of holes in the object. Each edge has its begin and end
points, and its defining implicit and/or parametric equation(s). Each
point is given as a pair of z and y coordinates. The input is given as a
set of directed edges. The output is an object with an outer loop and
k inner loops of directed edges. The problem is how to construct a
planar graph represent the correct topological arrangement of input
edges, see Figure 2. By discarding certain redundant edges (i.e.,
those in the object interior), we construct k+1 loops for the object
boundary.

First, by adding singular, inflection, and = and y~extreme points
as extra vertices if necessary, each edge is subdivided into monotone
curve segments, see Figure 2-(b). There are various geometric enti-
ties for the internal representation of an object.

¢ Point

There are two types of points, i.e., “begin” or “end” point. The data
structure of each point has various fields such as its “begin” or “end”
classification, the z, y-coordinate pair, and the pointer to edge.

e Edge

Each edge has its class as “line”, “circular arc” or general “curve”
edge. Each edge has one pointer to its begin point and another
pointer to its end point. The normals of a monotone edge are uniquely
determined by the two extreme normals at its begin and end points.
We can determine the unique quadrant direction (NE, NW, SW, or
SE) of each edge from the range of these normals. The other fields
are the center and radius for circular arc, the defining implicit and/or
parametric cquations for general curves, and convexity.

o Vertex

Vertex is a data structure for the adjacency information of the two
edges sharing a common vertex. Each vertex with two adjacent
edges is duplicated into two points, i.e., one as a begin point and
the other as an end point. Vertex structure has its (z, y) coordinate
pair and two pointers to the adjacent edges, begin-edge is the edge
beginning and end-edge is the edge ending at the vertex. Depend-
ing on which quadrants the normals of the two adjacent edges di-
rect, each vertex is classified as ISO-MIN (isolated-minimum), ISO-
MAX (isolated-maximum), HOLE-MIN (hole-minimum), HOLE-
MAX (hole-maximum), OBJ-MIN (object-minimum), OBJ-MAX
(object-maximum), LEFT-SIDE (left-side), or RIGHT-SIDE (right—

1617



side), see Figure 3. We call ISO- classes as isolated-type and others
as connecled-type.

e Side

Side is a data structure for a connected sequence of edges which form
a partial boundary of the object. There are two types of sides, “left”
or “right” side. Sides are the contents to be kept on a heap in the
same way as the conventional plane sweep algorithms keep the edges
intersecting with the current sweep line in a heap.

The conventional plane sweep algorithms use two fundamental
data structures, i.e., event gqueue and sweeping status. We use two
major data structures, a list of vertices (verfez—queue) as event queue
and a list of sides (side-heap) as sweeping status.

3 Plane Sweep Algorithm

In this section, we describe a simple plane sweep (SPS) algorithm
assuming there are no numerical errors in the geometric computa-
tions with used in the algorithm. The SPS algorithra is described by
sweeping a horizontal line from bottom to top. We initialize vertez-
queue by sorting all the input points into a sorted list of vertices.
Two coincident points are combined into a single vertex, and at the
same time the vertex classification is done. The first version of SPS
algorithm is as follows.

Algorithm PlaneSweep
(* first version of SPS algorithm *)
begin
Sort the vertices into vertez—queue and classify the vertices;
stde-heap = empty;
while vertez—queue is not empty do begin
Take the bottom vertex in vertez-queue;
Do local processing according to the vertex class;
Delete the bottom vertex of vertez—queue; end
end

3.1 Local Processing

Local processings on event vertices are divided into two group. The
types of ISO-MIN,0BJ-MIN, and HOLE-MIN form one group. For
these types, we construct new side(s) originating from the current
event vertex and insert them into a right position in side-heap. Each
edge adjacent to the vertex constructs a side of type left or right. If
the edge direction is from top to bottom (resp. bottom to top), the
side type is left (resp. right), see Figure 4.

Before inserting a new side to side-heap, we check whether this
side intersects with an adjacent side in side-heap. The details of this
intersection processing are explained in the §3.2. The pseudo code
for local processings on -MIN vertices is given below.

procedure LocalMin(v)
(* Local processing on a -MIN vertex v*)
begin
newl = MakeNewSide(v.begin-edge,v);
new2 = MakeNewSide(v. end-edge, v);
if newt is empty then new1 = new2;
if new2 is to the left of new1 then swap new1 and new2;
previous = the side previous to the location for new1 in side-heap;
next = the side next to the location for new2 in side-keap;
IntersectSides(new1, previous);
if new?2 is empty
then IntersectSides(new1, next);
else IntersectSides(new2, next);
Insert newl and new2 between previous and next;
end

The procedure “MakeNewSide” returns a new side containing only
a single edge. The edge direction determines the side type. In the
cases of OBJ-MIN and HOLE-MIN, the vertex has two pointers to
the two adjacent sides. Left-side (resp. right-side) field points
the side which is to the left (resp. to the right) of the vertex, see
Figure 4.

1618

procedure MakeNewSide(e, v}
(* Make a new side with edge e and bottom vertex v ¥)
begin
Allocate memory for new-side;
if the direction of e is from top to bottom
then new-side.type = left;
else new-side.type = right;
new-side.edges = e;
new-side.bottom = v;
if v.type = OBJ-MIN then begin
if new-side.type = left then v.left-side = new-side;
else v.right-side = new-side; end
else if v.type = HOLE-MIN then begin
if new-side.type = left then v.right-side = new-side
else v.left-side = new-side; end
Set new-side.top to the top point of e;
end

Local processing on the other type event vertices does not create
new sides. At first, we search side-heap for the side(s) having the
same top point(s) with the current event vertex. We call this side
as curreni-side. If the vertex type is LEI'T-SIDE or RIGHT-SIDE
(Figure 5-(a)), the new edge must be appended to current-side. If
it is ISO-MAX (Figure 5-(b)), curreni-side must be deleted from
side-heap since this side does not appears in the final result. In
OBJ-MAX and HOLE-MAX cases, curreni-side and the next side
(denoted next-side) must have the same top points, and they must be
connected at the top. If the two sides have the same bottom vertices
(Figure 5—(c)), these sides construct either an inner loop or an outer
loop. When one of the two sides has ISO-MIN bottom, both sides are
redundant and we delete them, see Figure 5-(d). Otherwise, current-
side and nezt-side have different bottom vertices, and both bottom
vertices have two adjacent sides. Thus, there are at least four sides
connected in a sequence. We may treat any three connected sides as a
single side, see the cases (a), (b), and (c) in Figure 6. As before, after
inserting a new edge, we must check whether the new edge intersects
with an edge of adjacent side. The procedure “LocalOther” describes
a sequence of these processings.

procedure LocalOther(v)
(* The local processing on the vertex v with type ISO-MAX,
RIGHT-SIDE, LEFT-SIDE, OBJ-MAX, or HOLE-MAX *)
begin
current = the side with top coordinates the same as that of v;
previous = the side previous to current in side-heap;
next = the side next to current;
if v.type = LEFT-SIDE then begin
Add v.end-edge to the tail of current.edges list;
Change current.top to the begin point of v.end-edge; end
else if v.type = RIGHT-SIDE then begin
Add v.end-edge to the tail of current.edges list;
Change current .top to the end point of v.end-edge; end
else if v.type = ISO-MAX then
Delete current from side-heap;
(* Next cases are for OBJ-MAX or HOLE-MAX *)
else if current.bottom = next.bottom then begin
result = Concatenate(Reverse(next.edges),current . edges);
if v.type is OBJ-MAX
then result.type = outer-loop;
else result.type = inner-loop;
Output(result);
Delete current and next from side-heap; end
else if current.bottom.type = ISO-MIN
or next.bottom.type = ISO-MIN then
Delete current and next from side-heap;
else if current.bottom.left-side = current then begin
Add Concatenate(Reverse(next . edges),current . edges)
to the tail of next .bottom.right-side.edges;
bottom-vertex = current.bottom.right-side.bottom;
next.bottom.right-side.bottom = bottom-vertex:
bottom-vertex.left-side = next.bottom.right-side;
bottom-vertex.right-side = current.bottom.right-side;



Delete current and next from side-heap; end
else if next.bottom.left-side = next then begin
Add Concatenate(Reverse(next . edges),current . edges)
to the tail of next.bottom.right-side.edges;
bottom~vertex = current.bottom.left-side.bottom;
next.bottom.right-side.bottom = bottom-vertex;
bottom-vertex.left-side = current.bottom.left-side;
bottom-vertex.right-side = next.bottom.right-side;
Delete current and next from side-heap; end
else begin
Add Concatenate(Reverse(current.edges) next . edges)
to the tail of current.bottom.left-side.edges;
bottom-vertex = next.bottom.left-side.bottom;
current.bottom.left-side.bottom = bottom-vertex;
bottom-vertex.left-side = next.bottom.left-side;
bottom-vertex.right-side = current.tottom.left-side;
Delete current and next from side-heep; end
IntersectSides(previous, the side next to previous in side~keap);
if v.type = LEFT-SIDE or RIGHT-SIDE
then IntersectSides(current, next);
end

Using the above procedures, we describe the complete version of SPS
algorithm as follows.

Algorithm PlaneSweep
(* complete version of SPS algorithm *)
begin
Sort the vertices into verfez—queue and classify vertices;
side—heap = empty;
while vertez—gueue is not empty do begin
v = the bottom vertex in verter-queue;
if v.type is OBJ-MIN, HOLE-MIN, or ISO-MIN
then LocalMin(v);
else LocalOther(v);
Delete the bottom vertex from vertez-queue; end
end

3.2 Intersecting Two Sides

The procedure “IntersectSides” is used in most of the procedures
in §3.1. Its main role is intersecting two sides but not limited to
this. Each new event vertex generated from an intersection must be
ingerted into a correct location of verfex-queue, and the top coordi-
nates of certain sides must be modified if necessary. One intersec-
tion induces three different vertices with the same coordinate; one
connected-type vertex and two isolated-type vertices, see Figure 8.

For a consistent processing of the algorithm, by assuming as if
the two isolated-lype vertices were kicked out of e-bound by cutting
the ends of the corresponding subedges (see Figure 7). Thus, we can
uniquely determine the processing order of these three coincident
vertices. For a left side, the first (highest) edge in the edge list of this
side has top-to-bottom direction, and for a right side the first edge
has bottom-to-top direction. So, we can classify the intersections
into four types as in Figure 8. Upper (resp. lower) subedge of an edge
generated from the intersection is represented with a superscript '+’
(resp. ™-"), e.g., left* and left~, see Figure 8. The procedure for
intersecting two sides is described below. Common routines (4, 8, 9]
can be used to compute intersections between two monotone curve
segments for procedure “IntersectTwoEdges”.

procedure IntersectSides (sidel, side2 )
(* Intersecting the two side sidel and side2 *)
begin
edgel = first edge in the list sidel.edges;
edge2 = first edge in the list side2.edges;
p = Intersect TwoEdges(edge1, edge2);
Subdivide edgel and edge2 at p;
Create and order three new vertices;
Insert the three vertices into vertez—queue with sorted order;
end

1619

As a final remarks on the description of SPS algorithm, we mention
some topological characteristics of the intersections computed in this
algorithm.

Property 1 The connected type vertex generated by the intersection
of lwo edges is determined by the two subedges which have their oul
normals facing each other. The intersection end points of the other
subedges become isolated type vertices.

Property 2 The connected type vertez generated by the intersection
of two edges is determined by one of the next four pairs of subedges
which are two consecutive edges in the counter clockwise angular or-
der around the vertex.

o leftt left™ o right™,rightt e leftt right* e right= left~

We can easily see that the above two properties are satisfied in Fig-
ure 8. The four conditions of Property 2 are called as connection
conditions.

4 Modeling Uncertanties

Developing general mechanisms to produce robust implementations
of geometric algorithms is an immediate research goal of geometric
and solid modeling. As an effort towards this direction, Milenkovic
suggested two techniques called data normalization and hidden vari-
able method [7] to solve the problem of determining the topological ar-
rangement of polygonal regions in a plane. In §5, we develop two tech-
niques called multiple intersection merging and intersection splitting
which are similar to vertez shifting and edge cracking in Miler.kovic’s
data normalization technique. First, we modify Milenkovic’s robust-
ness conditions (7] to the conditions needed for the robustness of our
algorithm.

Definition 4.1 Robustness Conditions
If the SPS algorithm satisfies the following three conditions, the al-
gorithm is robust during the execution of the algorithm.

1. No two non-coincidend event vertices are closer than .
2. No event vertez is closer than € 1o other edge.

3. No two edges are closer than ¢ ezcept at their vertices.

We say a plane sweep algorithm is robust within uncertainty bound ¢,
if the algorithm satisfies the above three conditions. The algorithm
is in normal state when it satisfies these robustness conditions, and
in abnormal state otherwise. To determine the uncertainty bound €
good for the data normalization of curve segments, we approximate
each curve segment by a polygonal chain of line segments. Each curve
segment is approximated within an approximation error ¢g, and the
corresponding uncertainty region looks like a band (called ¢o-band)
as in Figure 9. The uncertainty bound ¢y depends on several factors
such as the precision of arithmetic operations, the acceptable error
in each application problem, etc. It is known that the uncertainty
bound can be calculated from these factors [3, 7).

We can also determine other uncertainty bounds ., ¢, and €. €q
represents the uncertainty bound for the input curve segments when
other preprocessing operations are applied to the curve segments.
€ defines an uncertainty bound for the intersection operation itself.
When two curve segments with e;~band are intersected, the uncer-
tainty region for the intersection point has a diamond shape as in
Figure 10-(a), and we can take the radius of a circle enclosing the
region as an uncertainty bound. The size of ¢, depends on both €4
and the angle between the two curve segments at the intersection
point. In Figure 10-(b), the diamond shape region may become thin
and long when two curves intersect with a very small angle (a long
intersection case). Thus, we fix an appropriate ¢, as €] and treat
the long intersection case (where ¢, > €}) quite differently from the
other normal case. €. is an error bound which counts for the errors
involved in the various arithmetics used in testing whether the curve
segments intersect. Before continuing the description of algorithm,
we state the basic assumptions for the input curve segments.

Assumptions

1. No two different vertices are closer than ¢,. Any points within



€, distance are identified as a single coincident vertez.
2. No verlez is closer than ¢, to any other edge.

8. The number of edges passing through the circlular region of
radius €; + ke, is limited o a certain fized number k.

The above assumptions 1 and 2 guarantee that the algorithm is in a
normal state at the start. Further, we can make these assumptions
hold and make the algorithm robust by removing anomalies arising
in the middle of algorithm execution according to the next lemma.

Lemma 4.1 The SPS algorithm may fall into an abnormal state
only when either of the next two cases occurs.

o Multiple Intersection : Multiple inleresections occur in a very small
region.

o Long Intersection : Two edges are within a very small distance over
an interval, or they inlersect with a very small intersection angle.

5 Correcting Intersection Anomalies

A common error encounted in the plane sweep is the case where more
than two edges intersect at the same point or more feasibly in a very
small region. Due to the numerical errors resulting from finite pre-
cision arithmetic, the SPS algorithm may not determine a correct
planar topology for an arrangement of planar curve segments in this
case. Further, the subedges resulting from multiple intersection may
be very tiny and thus may break the normal state. In order to make
right decisions for a correct topology, we create a data structure which
enables an intersection point to collect all the edges closer than €, to
it. A second problem is about the long intersection case which we
mentioned in §4. We convert each long intersection to a single edge.

5.1 Multiple Intersection Merging

Multiple intersection occurs when an edge intersects at the point
which had been already determined as an intersection point of other
edges. Of course, a multiple intersection implies that the uncertainty
ea—band of new edge and the uncertainty region for an intersection
point have a non—empty intersection. The problem is how to solve
the following two questions in a multiple intersection.

e The algorithm has to make the correct topoclogical decisions at
each multiple intersection point to construct a topologically correct
final object.

o The algorithm must satisfy the robustness conditions at each mul-
tiple intersections.

The new structure IntersectionVertex may have an unlim-
ited number of adjacent edges sorted according to the angular order
around the vertex. Thus, we can preserve a correct topology by pro-
ceeding the following steps when a multiple intersection is detected.

1. Subdivide the edge into two subedge at the multiple intersec-

tion point.

. Insert the new subedges into the correct location in the angular
order.

. Make new vertex connections if an inserted subedge and its
neighboring subedges satisfy the connection conditions of Prop-
erty 2 in §3.2.

4.
5.

Update the vertex structure if necessary.
Update the uncertainty bound ¢, for this intersection.

Figure 11 shows an example of multiple intersection merging. In (a),
at the event vertex V3, a new edge E3 crosses through the uncer-
tainty region for the intersection point of the two edges E, and E,.
Before the new edge Ea appears, £, and E5 construct a new ver-
tex of type HOLE-MIN connected to the two subedges E} and EF.
After E3 penetrates the intersection uncertainty region, two pairs of
subedges (E;,E;‘) and (E[, E3 ) make the new connected type ver-
tices. Note that the two ISO-MAX vertices in verlez-queue are now
replaced with these new vertices, and the uncertainty bound for this
intersection is now increased from e} to ¢Z, where €? includes the error
generated from the calculation of a new intersection, i.e., e?, = e; +ec.
Consider the case where the error propagation occur, see Figure 12.
The intersection uncertainty bound is growing up larger and larger

1620

in this situation. Since we assume the maximum number of edges
passing through a very small region is limited to k in the assumption
3 of §4, the number of error propagation is also limited to k.

New data structures for this scheme are as follows. At first, the
structure point has two pointers to the structure IntersectionVertex
(this pointer called as intersect field) and to the structure vertex
which is incident to the point. The coincident points arising from an
intersection must point to the corresponding IntersectionVertex
structure. The structure IntersectionVertex has a pointer subedge
to the list of all the subedges which are emanating from this intersec-
tion. These subedges are sorted according to the angular order about
this vertex. The other fields of the structure are the x,y coordinates
of the intersection point (it is the center of uncertainty circle), and
an uncertainty radius epsilon which epsilon contains the value of
¢;. Now, we describe the procedure “MultipleIntersectionMerging”
based on the above data structures.

procedure MultipleIntersectionMerging (edge, intersect)
(* execute intersection collection with one edge edge and
an IntersectionVertex structure - intersect *)
begin
edgel, edge2 = subedges of edge cut at the intersection;
Insert edge1 into the sorted list of intersect.subedges;
pre-edge = the edge previous to edgel in intersect.subedges;
next-edge = the edge next to edgel in intersect.subedges;
if (pre-edge, edge1) pair satisfies the connection conditions
then begin
old-vertex = the existing event vertex adjacent to pre-edge;
new-vertex = new connecled type vertex (pre-edge and edgel);
if 01ld-vertex is not isolated-type then begin
mate-edge = the edge connected to pre-edge via old-vertex;
iso-vertex = new isolated-type vertex with mate-edge); end
Delete old-vertex from vertez—queue;
Insert new-vertex and iso-vertex into vertez—queue; end
if (edge1, next-edge) pair satisfy the connection conditions then
repeat the steps similar to the case of (pre-edge, edgel) pair;
repeat the above steps to the subedge edge2;
intersect.epsilon = intersect.epsilon + ¢.;
end

By this scheme, we can achieve the following lemmas and solve the
multiple intersection anomalies.

Lemma 5.1 Multiple intersection merging maintains a correct topol-
ogy to construct the final object.

Lemma 5.2 After each multiple inlersection merging, the plane sweep
algorithm is in a normal state.

5.2 Intersection Splitting

The long intersection case occurs when two edges intersect with a
very small angle, see Figure 10. We apply an intersection splitting
technique to this long intersection case. The technique is classified to
two types. We consider the long intersection of type left-left and right-
right intersection. When the intersection error bound ¢, is larger than
¢;, we split the intersection into two intersections (denoted splitting
intersections) and merge the two edges to one of these two edges (de-
noted splitting edge) which connects the two splitiing intersections.
‘We can merge the two edges and give the same direction to the com-
bined splitting edge as in Figure 13-(a). However, in left-right or
right-left intersection, we simply delete the corresponding splitting-
edge and only make two splitting intersections since the splitting-edge
is in the interior of the final object, see Figure 13—(b). In the case
of left-left (resp. right-right) intersection, the intersected edges are
merged to the leftmost (resp. right) edge. So, we always merge an
inner edge to an outer edge to make the splitting-edge. Now, we de-
scribe the intersection splitting algorithm. We only present the case
of Figure 13 in the next procedure. Other cases are similar.



procedure IntersectionSplitting(edge1,edge2,typel, type2,¢)
(* intersection splitting for two long intersection edges
edget and edge2 with typel and type2 respectively *)
begin
(* Assume edge2 is to be merged to edgel *)
split-edge = subedge of edgel within ¢;—uncertanty region;
ignore-edge = subedge of edge2 within ¢;~uncertanty region;
divide edgel and edge2 to edgei-up, edgei-down and
edge2-up, edge2-down respectively;
if typel = type2 then begin
(* Assume edgel and edge2 are left type edges and
edgel is to the left of edge2 below the intersection *)
make LEFT-SIDE vertex with edgei-down and split-edge;
make LEFT-SIDE vertex with edge2-up and split-edge;
make JSO-MAX vertex with edge2-doun;
make ISO-MIN vertex with edgel-down;
make two IntersectionVertex for splitting intersections;
else begin
(* Assume edgel and edge2 are left and right type respectively*)
make HOLE-MAX vertex with edge1-down and edge2-down;
make two ISO-MIN vertex with edgei-up and edge2-up;
make two IntersectionVertex for splitting intersections;
end
end

The topological correctness of this scheme is shown in the following
lemma.

Lemma 5.3 Intersection splitting maintains a correct topology to
construct the final object.

Further, the following lemma shows that the iatersection splitting
satisfies the three robustness conditions.

Lemma 5.4 Afler each intersection splitting, the plane sweep algo-
rithm is in a normal state.

5.3 Robust Plane Sweep (RPS) Algorithm

Summarizing all the above discussions, we now describe the RPS
algorithm. We omit other descriptions and present only a modified
version of the procedure “IntersectSides” which contains the solutions
to resolve the intersection anomalies.

procedure IntersectSides (sidel, side2 )
(* Intersecting two sides sidel and side2 *)
begin
edgel = the first edge in the list sidel.edges;
edge2 = the first edge in the list side2.edges;
if the top or bottom end points of edgel and edge2 are incident
then RETURN(); (* Intersection is already checked *)
(p,6s) = IntersectTwoEdges(edgel, edge2);
if p does not exist then return();
endi = the top end point of edge1;
end2 = the top end point of edge2;
if & > ¢; then
IntersectionSplitting{edgel, edge2,sidel.type,side2.type,c;);
else begin
if p is in the uncertainty region of end1.intersect.epsilon
then MultipleIntersectionMerging(edge2, endl.intersect);

else if p is in the uncertainty region of end2.intersect.epsilon

then MultipleIntersectionMerging(edge1, end2.intersect);
else begin (* normal intersection *)
Make three vertices and insert them into verter—queue;
Make p.intersect;
end end
end

Finally, we conclude with the final theorem.

Theorem 5.1 RPS algorithm is robust within e(= €+ €} + ke.) and

they consiruct a topologically correct final object.

6 Conclusion

In this paper, we presented the data structures and implementation
details for plane sweep algorithm to construct a planar object bound-
ary from a given input set of plane algebraic curve segments. First,
assuming the robustness conditions for the input curve segments, we
presented a simple plane sweep (SPS) algorithm. Then, using two
techniques to enforce robustness conditions to the given input by
applying slight modifications to the input geometry if necessary, we
presented a robust plane sweep (RPS) algorithm which can resolve
topological inconsistencies resulting from numerical errors in geomet-
ric computations using finite precision arithmetic.

References

1

Bent.ly, J.L., and Ottmann, T.L., (1979), “Algorithms for Re-
porting and Counting Geometric Intersections,” IEEE Transac-
tions on Computers, Vol. 28, pp. 643-647.

Chazelle, B.M., and Edelsbrunner, H., (1990), Private Commu-
nications.

{3] Hoffmann, C.M., (1989), Geometric and Solid Modeling: An In-
troduction, Morgan Kaufmann, San Mateo, California.
Johnstone, J. K., and Goodrich, M.T., (1991), “A Localized
Method for Intersecting Plane Algebraic Curve Segments,” Vi-
sual Computer, Vol. 7, No. 2, pp. 60-71.

[5) Kim, M.-S., (1988), “Motion Planning with Geometric Models,”

Ph.D Thesis, Dept. of Computer Science, Purdue University,
December, 1988,

2

-

{4

6

Kim, M.-S. and Lee, 1K., (1990), “Gaussian Approximations
of Objects Bounded by Algebraic Curves”, Proc. of 1990 IEEE
Int’l, Conf. on Robotics and Automation, May 12-18, Cincin-
nati, pp. 322-326.

) Milenkovic, V., (1988), “Verifiable Implementations of Geomet-
ric Algorithms Using Finite Precision Arithmetic,” Artificial In-
telligence, Vol. 37, pp. 377-401.

{8] Preparata, F.P., and Shamos, M.I., (1985), Computational Ge-

ometry: An Introduction, Springer-Verlag, New York.

Sederverg, T.W., and Scott, R.P., (1986), “Corparison of three

curve intersection algorithms,” Compnier Aided Design, Vol. 18,
No. 1, pp. 58-63.

(9

Figure 1: Plane Sweep Algorithm
@
(@)
Q
E ® : i:

Figure 2: Input Curve Segments and Output Object

1621



(a) ISO-MIN (b) ISO-MAX {c) LEFT-SIDE

(e) OB]-MIN ® HOLE-MIN (g) OB]-MAX (h) HOLE-MAX
Figure 3: Vertex Classes
sides left-type left-type
N N 4

I1ISO-MIN
right-type rlg‘ht-type

v

HOLE-MIN ISO-MIN

Figure 4: Making New Sides

sides sides

LEFT-SIDE RIGHT-SIDE ISO-MAX
@) ®)

(a) case a

(b) case b
(c) case c

Figure 6: Concatenating three sides

Figure 7: Cutting Subedges

(d) RIGHT-SIDE

(a) left-left
right” 1 ger

(b) Long Intersection

Figure 10: Uncertainty Bounds of Intersection

Figure 13: Intersection Splitting

1622



