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Abstract

For kinematically redundant manipulators, conventional dy-
namic control methods of local torque optimization showed
the instability which resulted in physically unachievable
torque requirements. In order to guarantee stability of the
null space vector method which resolves redundancy at the
acceleration level, Maciejewski [1] analyzed the kinetic be-
havior of homogeneous solution component and proposed the
condition to identify regions of stability and instability for
this method. 1In this paper, a modified null space vector
method is first presented based on the Maciejewski’s con-
dition which is a function of a manipulator’s configuration.
Secondly, a new control method which is based on the concept
of aspects is proposed.

It was shown by computer simulations that the modified
null space vector method and the proposed method have a
common property that a preferred aspect is preserved dur-
ing the execution of a task. It was also illustrated that both
methods demonstrate a drastic reduction of torque loadings
at tlie joints in the tracking motion of a long trajectory when
compared with the null space vector method, and thus guar-
antee the stability of joint torque.

1. Introduction

Kinematically redundant manipulators have more joint
degrees-of-freedoms (DOF) than are required to complete a
specified task. The majority of rescarches ou utilizing redun-
dancy have heen focused on the resolution of redundancy at
the kinematic level. The kinematics of manipulators is pre-

sented in the differential form by

z=J(60)0 (1

where & is an m-dimensional vector specifying the end-
effector velocity, @ is an n-dimensional vector denoting the
joint velocity, and J is the m by n manipulator Jacobjan
matrix.

For redundant manipulators m < n, the general solution
to Eq. (1) is typically given by the resolved motion method
[2] and represented in the form

0=JHO) e +x {I-JT"(6)T(0)) VH(6) (2)
where J* denotes the pseudoinverse or Moore-Penrose in-
verse of J [3], (I — J* J) is a projection operator onto the
null space of J. and VH () is the gradient vector of a per-
formance function H(8).
the above equation are related to the maximization and min-
imization of H (@), respectively. The positive scalar constant
% in Eq. (2) is based on the hardware limits of joint veloc-
ities. The second term in this eguation is the homogeneous

Especially, the signs + and — in
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solution to Eq. (1) since it results in no end-effector veloc-
ity. The homogeneous solution is frequently used to optimize
a performance function H(#) under the constraint of speci-
fied end-effector velocity by choosing H(@) to be some func-
tion of 8. Some of the performance functions that have been
applied for secondary criteria such as singularity avoidance,
higher flexibility, and obstacle avoidance, include JRA (Joint
Range Availability) [2,4], manipulability measure [5], condi-
tion number [6], compatibility index (7], minor measure [8],
and artificial potential function [9]. The homogeneous solu-
tion can also be used to optimize secondary criteria defined
in Cartesian space either to impose a priority to the manip-
ulator variables [10] or to avoid obstacles [16]. Alternative
formulations for instantaneously optimizing a secondary cri-
terion have also been presented by Baillieul [12] and Chang
[13), which seek exact locally optimal joint configurations at
the joint position level rather than at the joint velocity level.

In all of the above techniques, the specified end-effector
trajectory is the primary criterion. Unfortunately, the addi-
tion of a secondary criterion can significantly affect the pri-
mary criterion of trajectory tracking even though the sec-
ondary criterion is mapped mathematically into the null
space of J. This effect is a result of the physical limitations
of the actuators which prevent instantaneous achievement of
the secondary criterion. Klein and Chirco [14] illustrated that
the dynamic performance of a redundant manipulator showed
significant end-effector tracking errors when the scalar con-
stant & in a homogeneous solution, i.e., the second term of
Eq. (2), which determines how closely the secondary criterion
will be tracked, becomes large.

A more dramatic difficulty with using homogeneous solu-
tions is the instability in the null space vector method [15]
where redundancy is resolved at the acceleration level to in-
stantaneously minimize joint torque. In this case, the joint
acceleration is related to the end-effector acceleration by dif-
ferentiating Eq. (1) to obtain

F=JO+J0 (3)
where once again the general solution for @ is expressed in
the form

6=Tt@-JOH+(I-TTT)é (4)
where ¢ € %" is an arbitrary vector. In actual manipulator
control, given a desired trajectory, 4(-)., the command joint
acceleration @, is represented by a feedback control scheme
as follows:

Oy=Jt @4+ K,e+ K,e-JO) +(I-T*T)d (5)

where e xzq — x is the tracking error, K, and K, are
constant velocity and position feedback gain matrices. The

command torque T of model-based control is in general gen-



erated by the measured values of joint angle and velocity
vectors, namely @ and 6. That is,

T=M(8)8,+ N(8,8) (6)

where M(8) € R**™ is a symmetric, positive definite inertia
matrix, and N(0,8) € R" is a vector containing terms such
as Coriolis, centripetal, and gravitational torques. If 7 is used
to denote the torque due to the first term of Eq. (5), i.e., the
pseudoinverse solution, then 7 can be obtained as:

F=MJIt(#s+K,é+K,e—-J@)+ N. (7N

The optimization problem of locally minimizing joint
torque is recast as finding the vector ¢ to minimize

v - g+ N+ 7. ®)

This is a straight forward least squares problem which can
be solved by the pseudoinverse (3] with the solution given by

b=—[MI-T*D" 7. (9)

Thus the command joint acceleration éd can be obtained in
the form

6y = JH &4+ K,e+Kpe—J8)

~ M-It A (10)

The above equation was simplified with use of the identity
B[CB)* = [CBJ* because B = I — JTJ is hermitian and
idempotent {16]. The value of the minimum torque can be
obtained by substituting Eq. (10) into Eq. (6} and then using
Eq. (7) to obtain

r=F-M[MI-TtN]T 7 (11)

Unfortunately, because this is only a local minimization tech-
nique, it has been shown in [15] that the command joint accel-
eration given by Eq. (10) can induce large joint torques that
may require physically unrealizable joint torques in order to
maintain the desired end-effector trajectory.

In order to place realistic limitations on the use of re-
dundancy, Maciejewski [1] analyzed the kinetic effects of a
homogeneous solution and presented the condition for iden-
tifying the instability of the null space vector method. He
also showed that this condition is only a function of a ma-
nipulator’s configuration and thus can be used to determine
desirable regions of operation. However, he did not present
a real-time dynamic control law which may be guided by his
condition.

This paper is organized as follows. In Section 2, the mod-
ified null space vector method using the Maciejewski’s con-
dition, which is a new real-time dynamic control law, is pre-
sented. In Section 3, our own method, i.e., the J-Minor based
Dynamic Control, which is hereinafter abbreviated “JMDC”,
is proposed. Comparison of JMDC with the null space vector
method and the modified one is performed through computer
simulation in Section 4. Especially this computer simula-
tion illustrates an important point that the goal pursued by
Maciejewski’s condition is in common with the basic idea of
JMDC in order to guarantee stability of joint torque. Con-
cluding remarks are made in Section 5.

2. Modified Null Space Vector Method

The null space vector method proposed by Hollerbach and
Suh {15] leads to stability problem, even though locally this
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method reduces actuator torques. Maciejewski [1] presented
that the dependency of the direction of the homogeneous (or
null space) joint acceleration on the homogeneous joint ve-
locity (and vice versa) can be used to identify the regions
of stability and instability for the null space vector method.
Mathematically, this condition which we will call “Maciejew-
ski’s condition” in this paper can be expressed by

Oy -0y >0,

(12)

where 8 and 6y are homogeneous joint velocity and acceler-
ation vectors, respectively. When Eq. (12) is true, the homo-
geneous acceleration term, i.e., the second term in Eq. (10),
will increase the magnitude of the homogeneous joint velocity
and subsequently increase the torque requirements. This, in
effect, amounts to a positive feedback system and results in
the instability of local torque optimization noted in [15]. In
order to guarantee global stability when using the null space
vector method, the homogeneous joint acceleration must not
be applied when Eq. (12) holds.

As another contribution of Maciejewski, he proved that
the condition given by Eq. (12) is solely a function of a ma-
nipulator’s configuration. It is thus possible to determine
regions of operation for which the null space vector method
is inherently stable or unstable. However, Maciejewski did
not present a real-time control law to overcome instability of
the null space vector method using this condition, while he
focused on proving that the condition is only a function of 8.

In this paper, we propose the modified null space vector
method guided by Maciejewski’s condition. In this method.
the command torque is generated according to this condition
as follows:

= F {0y -6y >0 (13)

T o= F-M[MI-I"N]Fil0y 6y <0 (14)
where

oy = (I-JtJ1)e, (15)

by = - MI-I*D)" 5, (16)

Eq. (7). In Eq. (15), the vector gis a
value of joint velocity vector which can be measured from a
redundant robot system. The algorithm of the modified null
space vector method is illustrated in detail through the flow
chart shown in Fig. 1. Consequently, Maciejewski’s condition
can be incorporated in actively avoiding the instability region
of operation by using the modified null space vector method
rather than passively identifying the regions of stability and
instability for the null space vector method. Besides, the
original formulation of Maciejewski’s condition includes the
radius of curvature of a homogeneous solution space, which
hinders this condition from being implemented in on-line.
On the contrary, Maciejewski’s condition used in the mod-
ified null space vector method does not include this radius
of curvature as shown in Egs. (15) and (16), which enables
the on-line application of Maciejewski’s condition to the null
space vector method.

and ¥ is given by

3. J-Minor based Dynamic Control

The J-Miror based Dynamic Control {JMDC) is based on
the concept of aspects which are functions of the manipulator
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Fig. 1 Flow chart of the modified null space vector method.

configuration. The aspects have close relation to the full row
rank minors of the manipulator Jacobian matrix. Borrel and
Liégeois [17] found that there exist various classes of configu-
rations called “aspects”. The admissible domain in the joint
space is divided into ,C,, aspects for m task variables and
n joint variables. One of the separating surfaces between as-
pects is the locus of joint coordinates corresponding to one
of the m-th order minors of the manipulator Jacobian ma-
trix J € R™*" equal to zero. Mathematically, an aspect is
defined in [17].

Based on the definition of the aspect, we can suggest the
hypothesis that the necessary condition to guarantee the sta-
bility of joint torque is to preserve the aspect to which an
initial configuration at the beginning of a task belongs. Thus
the JMDC method for the dynamic control of redundant ma-
nipulators aims at preserving this preferred aspect by using
the performance function which has a direct control over each
full row rank minor, and generating the command joint ve-
locity 8, from the resolved motion method given by Eq. (2)
as follows:

éi+l _

= a@Y s +x {T-TH(0) J(6)} VHE) (1)

where i denotes the current state at time t = i - At (At:
sampling time); 6 and @' are the measured values of joint
angle and velocity at time ¢, respectively. The positive scalar
constant & in the above equation is based on the hardware
limits of joint velocities. Especially, the performance function
H (@) in the second term of Eq. (17) plays an important role
in the JMDC method because the aspect can be preserved
for some specific function.

For the kinematic control of redundant manipulators,

Chang [8] proposed the minor measure as the product of full
row rank minors of the Jacobian matrix, which is defined as:
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1/p

H= (18)

4
I
=1

where §;’s for ¢ = 1,2,...,p are the minors of rank m of the
Jacobian matrix J € ®™*"; with p = ,,C,,,, the combination
of m taken out of n. It is noted here that each minor is
maximized and is kept at a nonzero value by maximizing H.
Thus the aspect can be preserved by using this minor measure
as the performance function in Eq. (17).

The command joint angle (or displacement for a prismatic
joint) @4 is calculated by numerical integration:
o5t = 0%+ 6, At (19)
.0 . -0 .

where 03 is assumed to be equal to 8 for ¢ = 0. The com-
mand joint acceleration @ is generated by numerical differ-

entiation: )
Hit+l

si+1 Oy

S i i
o =84, 8s- 6y

At At

= (20)
where (9:1-“ — 8;) is assumed to be approximately equal to
(6, - 0;_1 ), and 03 is assumed to be zero. The above nu-
merical differentiation can generate relatively large values of
the command joint accelerations, which may in turn induce
large joint torques, especially at the beginning stage of mo-
tion when 92 = 0 and a large value of gd due to the improper
choice of k in Eq. (17) are assigned to Eq. (20). This dif-
ficulty can be fixed by selecting a small value of x which is
enough to induce smooth self-motion. It is noted that the
command joint acceleration is not influenced by any noise
signal because the measured joint velocities are not involved
in Eq. (20).

By using the computed-torque control law [18] which is
well known for non-redundant manipulators, the commmand
torque can be easily generated in the form

™= M(©) {8, + K, (0, - ') + K, (6} - 6)}

+N(6,68"),  (21)
where K, € ™" and K, € R**" are position and velocity
feedback gain matrices, respectively. It is worthwhile notic-
ing that the JMDC method does not have any torque op-
timization scheme explicitly, but focuses on suppressing the
switching of aspects at the kinematic level.

4. Computer Simulation

In this section, the characteristics of the modified null space
vector method and the hypothesis presented in the previous
section will be verified by the computer simulations which
are performed for the planar 3-DOF manipulator. The links
are all identical and are modeled as thin uniform rods with
lengths of 1 m and masses of 10 kg. The joints are laheled
1,2,3 from the base. The simulated movement of the end-
effector is a straight Cartesian trajectory starting and ending
with zero velocity, with constant acceleration over the first
and the last half of the movement, respectively. To gener-
ate a long trajectory of the end-effector, the command end-
effector acceleration is given by #, = [1.5 1.0]7 m/s? and
&g = [-1.5 — 1.0]7 m/s® for the first and the last half of

the trajectory, respectively, and the total duration time 7T is
chosen as 2 s. For the convenience, this trajectory is termed



as trajectory A.

In order to examine the relationship between the stabil-
ity of joint torque and the aspects, the simulation for the null
space vector method was first performed in which the planar
3-DOF manipulator was commanded to track trajectory A,
given an initial configuration 8 = [-50° 140° - 140°T.
The simulation results of trajectory A for the null space vec-
tor method are shown in Fig. 2(a)-(d). As can be seen in
Fig. 2(a), this method induces uniform configurations for
some short excursion of the end-effector from the beginning of
trajectory A. However, the configurations of the manipulator
become nou-uniform after the mid-course of the movement
although the cud-effector itself follows the command end-
effector trajectory well. Fig. 2(b) illustrates the profile of
joint torques computed by the method. In this figure, physi-
cally unachijevable joint torques which may exceed hardware
torque limits have occurred at about t = 1.25 and t = 1.8 s.
Thus the null space vector method has unrealistic character-
istics of joint torques.

To quantitatively examine the instability of joint torques
mentioned above, we observed how the full row rank minors
behave especially when extremely large joint torques are re-
quired. For the planar 3-DOJF manipulators with revolute
joints, the minors are given by

61 = det[J! J%) = 46,55 + €1£3523 (22)
by = det[J? JP] = L0535, (23)
by = det[J3 Jl] = —€3€353 — €1€3523 (24)

where J' is the i-th column vector of the matrix J: S, =
sin @z, 53 = sin By, and Sg3 = sin(f+03). Figs. 2(c) illustrate
the profiles of these minors for the null space vectcr method.
Observing Figs. 2(b), and 2(¢), we surprisingly found that
that the peak joint torques, specifically torques of joint 1 and
2. occur almost exactly when the minor é; becomes zero.

The relation between minors and joint torques can be
explained in more detail as follows. Chang [8] proved that
the manipulability measure [5} can be rewritten in terms of
full row rank minors:

» 1/2
w = v/ det (J JT) = (Z 5,2) (25)
=1

where 8;'s, 1+ = 1,2,...,p, with p = ,C,,, are the minors of
rank m of the matrix J € R™*" with m < n. The pseudoin-
verse of J with full rank is given by

Jt=JrgJgh-n (26)

Reviewing Eqs. (25) and (26), we can state that the smaller

Fig. 2
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Simulation results of trajectory A for the null space
vector method: (a) arm motion; (b) torque profiles; (c)
minor profiles; (d) plot of 8- 8.



values of the minor §; induce the larger values of the elements
of J*. The minimum norm acceleration, i.e., the first term
of Eq. (10), also becomes large due to the pseudoinverse J ¥,
and then results in the large values of #. Thus the command
torque for the null space vector method becomes large owing
to #. Therefore it can be concluded that the small values of
full row rank minors result in a remarkable increase of the
torque required to track a desired end-effector trajectory.

To illustrate whether the modified null space vector
method can guarantee the global stability of joint torque or
not, the second computer simulation was performed for tra-
jectory A. As shown in Fig. 3(a), the arm motion for this
method is uniform and stays within one kind of aspects. This
is verified in Fig. 3(c) where the aspect to which the initial
configuration belongs is preserved all the time because any
minor among 8y, éz, and é3 does not become zero. In fact, the
method does not have any direct control over the full row rank
minors. But, Maciejewski’s condition results in preserving an
aspect when used in the modified null space vector method.
As anticipated for this arm motion, the joint torques are dras-
tically held down at low values in Fig. 3(b). The profile of
01 -0y is presented in Fig. 3(d) where the torque due to the
homogeneous joint acceleration 9;1, i.e., the second term of
Eq. (10), was applied only when 8 - O <0,ie. , during the
time interval from ¢ = 1.0 to ¢t = 1.65 s and from t=18to
t = 2.0s. In the meanwhile, the profile of 85 -8y for the null
space vector method is shown in Fig. 2(d) where the torque
due to the homogeneous joint acceleration was always applied
during the execution of the task. Especially, the peak value
of @y - By in Fig. 2(d), i.e., about 6.5 x 10°, is observed at
the same instant as the peak joint torques occur in Fig. 2(b).
Maciejewski [1] stated that a configuration is unstable when
Eq. (12) is true. As shown in Figs. 3(b) and 3(d), this is
not true for the modified null space vector method because
it requires sufficiently low values of torques and thus guaran-
tees stability even when Eq. (12) holds. Therefore, it should
be pointed out that unstable configurations depend on not
whether the sign of 0;1 0;1 is posmve or not but how large
the positive peak value of On -6y is.

In the simulation of the JMDC method, the minor mea-
sure [8] was used as a performance function. This measure is
given for the planar 3-DOF manipulator by

1/3
H = {det[J] J?) - det[J? J3] - det[J® J’]} !
= {(£16252 + £:1€3553) £26353 (— €285 — £1£3523) 13,
where J* is the i-th column vector of the matrix J. The con-

stant & in Eq. (17) was chosen as 0.001 by considering smooth
self-motion at the beginning stage of motion. The simulation
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results for trajectory A are shown in Fig. 4(a)-(d). The
uniform arm motion illustrated in Fig. 4 (a) implies that the
configurations of the manipulator belong to only one aspect.
This is verified in Fig. 4 (¢) which demonstrates no switching
of aspects. As expected, the joint torques shown in Fig. 4 (b)
are drastically reduced when compared with the null space
vector method. Fig. 4(d) illustrates that the sign of 8y - @y
is almost negative except the transition time from accelera-
tion to deceleration, i.e., t = 1 s. Moreover, the positive peak
value of 8y - @y is small. Thus the configurations shown in
Fig. 4(a) are inherently stable. Especially, it is worth while
noticing that the arm motion, torque profiles, and minor pro-
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nor profiles; (d) plot of 8- 8y.

files for the JMDC method are similar to those for the modi-
fied null space vector method when one compares Fig. 3(a)-
(¢) with Fig. 4(a)—(c). This implies that the modified null
space vector method in which the torque due to the homo-
geneous joint acceleration is applied according to Maciejew-
ski's condition is related to preserving an aspect and thus
has the similar effect on joint torques as the JMDC method.
However, a heavy computational load is demanded for this
method since several pseudoinverse operations are required
in computing the terms J* and [M (I — J* J)]*. On the
contrary, the JMDC methaod requires only one pseudoinverse
operation, namely J*, so it is more suitable for real-time
control than the modified null space vector method.

5. Conclusion

This paper presented two real-time dynamic control laws to
guarantee the global stability of joint torque for kinemati-
cally redundant manipulators: 1) modified null space vector
method and 2) J-minor based dynamic control method. The
first method is in a modified form of the local torque opti-
mization algorithm proposed by Hollerbach and Sub, and is
guided by the Maciejewski’s condition which is a function of
a manipulator’s configuration. In this method, Maciejewski’s
condition is incorporated in actively avoiding the instabil-
ity region of operation rather than passively identifying the
regions of stability and instability. The J-Minor based Dy-
namic Control (JMDC) method is based on the concept of
aspects which are also functions of a manipulator’s configura-
tion. The JMDC method starts with the basic understanding
of full row rank minors of the manipulator Jacobian matrix.
In our investigation, we found that these minors which cause
the switching of aspects have close relation with the dynam-
ics of redundant manipulators, which has not been treated
carefully. The key idea of JMDC method is at the kinematic
level to preserve the aspect to which an initial configuration
belongs, and thereby at the dynamic level to guarantee the
stability of joint torque.



It was shown through computer simulations that the mod-
ified null space vector method in which the torque due to a
homogeneous joint acceleration is applied according to Ma-
ciejewski’s condition preserves an aspect, while it does not
include any direct control over full row rank minors. Thus
it can be concluded that Maciejewski’s condition ultimately
aims at preserving an aspect. It was also pointed out that un-
stable configurations of a manipulator depend on not whether
the sign of 8 - @ is positive or negative but how large the
positive peak value of 8y -6y is, while Maciejewski stated
that a configuration is always unstable when 0 -6y > 0.

It was proved by computer simulations that preserving
an aspect is a necessary condition to guarantee the stability
of joint torque in the global sense. Since the JMDC method
directly preserves an aspect by using the minor measure, it
is simpler in algorithm and more efficient in real-time control
than the modified null space vector method which has the
similar effect on joiut torques as the JMDC method. It was
demonstrated that both JMDC and modified null space vec-
tor methods generate reasonably low values of joint torques
when compared with the null space vector method.
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