‘91 KACC 1991. 10. 22~24

ROBUST DIGITAL CONTROLLER FOR ROBOT MANIPULATORS

Tadashi Ishihara

Department of Mechanical Engineering,

Tohoku University, Sendai, Japan

ABSTRACT

Direct digital design of computed torque controllers for
a robot manipulator is discussed in this paper. A simple
discrete-time mode!l of the robot manipulator obtained by
Euler's method is used for the design. Taking account of
computation delay in the digital processor, we propose
predictor-based designs of the PD and PID type controllers.
The PID type controller is designed based on a modified
version of the discretc—time integral controller proposed by
Mita. For both controllers, the same formulas can be used to
determine the feedback gains. A simulation example is
presented to comparc the robustness of the proposed
controllers against physical parameter variations.

1. INTRODUCTION

Computed torque methodf1] is well known as an
efficient algorithm for trajectory control of a robot
manipufator. In this method, the dynamics of a robot
manipulator is lincarized by a nonlincar compensator and
then the conventional linear state feedback law is applied.
Since complex on-line computations are required for the
nonlinear compensation, it is appropriate to implement the
algorithm as a digital controller.

Using the meticulous discrete~time mode! of a robot
manipulator obtained by the trapezoidal approximation,
Neuman and Tourassis{2] have proposed a direct digital
design of the PD type computed torque controller. However,
since the structure of the model is inconvenient for the
controller design, they have introduced an additional heuristic
approximation. Morcover, in spite of the fact that the
computation time is significant in a computed torque
controller, their design has ignored the computation delay in
the controller.

In this paper, we propose designs of discrete-time
computed torque controllers based on a simpler discrete-time
model of a robot manipulator obtained by Euler's method([3].
Since Euler's method is the most crude approximation, its use
is rarely recommended in numerical solution of differential
equations. In our case, the effect of the discretization error is
not so serious because the error can be reduced by virtue of
feedback.

First, we discuss the design of the PD type controller
disregarding the computation delay. Simple formulas for the
determination of the feedback gains arc obtained. Then we
propose a design of the PD type controller which includes a
state predictor to compensate the computation delay. The
feedback gains can conveniently be determined by use of the

formulas for the design disregarding the computation delay.
To achieve more robust performance against parameter
variations and/or disturbances, we propose a simple and
transparent design of the PID type controller accounting the
computation delay. This design is based on a modified
version of the integral controller proposed by Mita[4]. The
formulas for the proposed PD type controllers are stil! useful
to determine the feedback gains. A simulation example is
presented to compare the robustness of the proposed
controllers against physical parameter variations.

2. DISCRETE-TIME MODEL

Consider an n—-degree-of—freedom robot manipulator
described by

D®)6 + h(8,6) + g(6) =7, @.1)

where 7 is the nx 1 vector of joint forces or torques supplied
by the actuators, 6(f) is the nx 1 vector of joint positions,
with 6(1)=[0,(r) 6,() - 6,(1)]". The matrix D(f) is the nxn
mass matrix of the manipulator, #(6,6) is the nx 1 vector of
centrifugal and Coriolis terms and g(8) is the nx 1 vector of
gravity terms.

Using Euler's method[3], we construct a discrete-time
model of (2.1). Let T denote the sampling period for the
discretization. Denoting 6(kT), G(kT), G(kT) and ©(kT), where
k is an integer, by 8(k), 6(k), (k) and (k), respectively, we
can write (2.1) as

6(k) = DB (k) - h(6(K), 6(K))
- g} . (2.2)
Applying Euler's method, we have
B(k+1) = O(k) + T6(k), 2.3)
6(k+1) = 6(k) + TEK), (24)

where we have omitted the discretization errors. Substituting
(2.4) into (2.2), we have

6k+1) = 6(6) + D BEN®)
- HO®,6()] - glo®]r. 29
Define
ak) = [8') 6. (2.6)
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Then the difference equations (2.3) and (2.5) constitute the
state - space representation of the discrete-time model
obtained by Euler's method.

3. PD TYPE CONTROLLER DISREGARDING
COMPUTATION DELAY

First, as a preliminary to consider the design accounting
the computation delay, we discuss the design disregarding the
computation delay. This controller is applicable only when
the generation of the control input signal can be completed
sufficiently fast compared with the sampling period. The
following discussion is almost parallel to the standard
derivation of the continuous-time computed torque
controller[1].

Nonlinear Compensation

For the discrete-time state space model given by (2.3)
and (2.5), we consider the nonlinear compensation given by

T®) = 1[0, 6K)] + 26G)] 61
+D[6E®)v k),
where v(k) is the new control input vector h,[+], g,[] and
Dy[] are estimates of A[--], g[] and D[], respectively.
Then the evolution of the state vector g(k) defined in (2.6) is
described by

qk+1) = O gk} + T;v(k) + E, {g)], (3.2
where
AN
r = o 1”7 = ’
n n n (3‘3)
Er[qk)] = O
1Ol e |

In the matrices defined in (3.3), 7, is nxn identity matrix, 0,
is nxn zero matrix and the vector n{g(k)}, which represents
the error arising from the uncertainties of the physical
parameters, is defined by

n,e®)] = IDOEHD,[6(K)] - DIOE]}v (k)
+ {h[0(K), B(K)] - h[B(K), B(R)]}
+ {8,[0®)] -g[6®)]} - G4

Apparently, if no modelling error exists, then m,{g(k)]=0 and
the dynamics of the robot manipulator is completely
decoupled and linearized.

Linear Compensation

Let 84k), 6,(k) and 6(k) denote the sampled values of
the position, the velocity and the acceleration of the reference
trajectory, respectively. Introduce the state vector for the
reference trajectory as

q,() = [6,(®) 6,®)] . 3.5

Assume that the sampled values 6,(k), 6,(k) and 6 (k) satisfy
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the relation of Euler's method, then the state defined by (3.5)
satisfies

afk+1) = @, q8) + T,00). @3.6)

Using the new control input vector v(k) in (3.2), we
apply the following state feedback which can be regarded as
a PD type control law.

V) = 6.8 + K,[8,0)-0()]
+ K [6,(k) -6(k)] 37
The matrices K, and K, in (3.7) are defined as

K, = diag[k, k,;k,], 3.8)
K, = diag(k,k,-k,_], * (3.9)

where k, and k,; are the position and the velocity feedback
gains for the i-th joint, respectively. Define the state
feedback matrix as

F=[K, K]. (3.10)
Then we can rewrite (3.7) as
v(k) = -Flq(k)-q k)] +6.44). @11

It follows easily from (3.2), (3.6) and (3.11) that the behavior
of the tracking error

elk) = qk) - q,k) (12
is described by
e(k+1) = (@,-T;Flek) +E;[qk)] .

Using (3.3) and (3.10), we can write the transition matrix in
(3.13) as

(3.13)

®,-T,F . 7, 3.14
T | 1K, 1-TK, | @14

Feedback Gain Determination

In the computed torque method, the feedback gain matrix
F is chosen such that the tracking vector e(k) converges to
zero as k tends to the infinity assuming that E{g(k)]=0, i.e.,
no modelling error exists. Employing the special structure of
the error transition matrix (3.14), we can obtain a simple
formula for the feedback gain matrix F which provides the
desired eigenvalue assignment. Note that the characteristic
polynomial for the emor transition matrix (3.14) can be
expressed as

det{2l,, - (®,-T,F)]
= det[ (el 1)l ~1,+TK)+T°K ]
= 1‘[ [22-(2-Tk)z+(1-Tk,+T%,)].

i=]

(3.15)

The above expression implics that the response of the i-th
joint can be determined independently by the feedback gains
k,; and k,;. Note that the characteristic equation for the i-th



joint is given by the quadratic equation

22 -(2-Tk)z+(1-Tk,+T%k) = (3.16)
Let z; and z;, denote the desired eigenvalues for the i-th
joint dynamics. It follows easily from (3.16) that the
feedback gains in the i-th joint assigning the desired
eigenvalues are given by the simple formulas

k

i = T‘Z(l —Z“)(l —zi2) ’ (3‘17)
k, =T'(2-z,-z,). (3.18)

Some information useful for practical design can also be
obtained from (3.17) and (3.18). For example, in the case
that the desired eigenvalues z;, and z,, are required to be real
and positive less than unity, which is necessary for the
tracking without overshoot, then the above rule readily gives
the range of the feedback gains as

0<k <T7?,

L3

0<k,<2T. (3.19)

4. PD TYPE CONTROLLER ACCOUNTING
COMPUTATION DELAY

In the case that the computation delay is significant, the
controller designed by the method proposed in the previous
section does not provide desired performance. In this
section, we propose a design of the PD type computed torque
controller accounting the computation delay.

Predictor-Based Controller

For linear discrete-time systems, it is well known that
the state feedback regulator accounting the computation delay
can be designed by using the state predictor{4][6]. This idea
can be used to design a discrete-time computed torque
controller which is essentially nonlinear controller.

For simplicity, we assume that only unit computation
exists in the controller, which implies that the necessary
computation can be completed within the sampling interval.
Let 6(k |k-1) and 0(k|k -1I) denote the one-step predictions
of 6(k) and 6(k), respectively, based on the input and output
data available at time k. Using the discrete-time nonlinear
state—space model of the robot manipulator (2.3) and (2.5),
we can construct the one-step ancad state predictor as

O(klk-1) = O(k-1) + TH(k-1), “.1)
6k|k-1) = 6(k-1) - ID;'[B(k-1)]
{[6k-1),6(c-1)] + g,[0C-1)]}
+ TD; [6k-1)v(k-1) . (4.2)

Replacing 6(k) and 9(k) in the nonlinear compensation (3.1)
by O(k|k-1) and 6k |k - 1) respectively, we can realize the
nonlinear compensation using the data available at time k as

T(k) = h[0(k|k-1), 6k ik-1)] + 8o[0k|k-1)]

+ D,[0k|k-1)]v(k) . 4.3)
If the discretizaion error and the modelling error do not exist,
then B(k)=0(k |k~1) and 6(k)=6(k|k~1). Consequently, the
robot manipulator with the nonlinear compensation (4.3) can

1673

simply be described by
qk+1) = D, qk) + Tv(k).

Moreover, in this case, the prediction (4.2) reduces to

@4.4)

Oklk-1) = 6(k-1) + Tv(k-1). 4.5)

For simplicity, we use the formula (4.5) instead of (4.2) to

compute the prediction 0(k tk-1I) in the nonlinear
compensator (4.3). Moreover, if we define
qlklk-1) = [0'(kIk-1) 6'K[k-1)T, (“4.6)
then the predicted state can be expressed as
gklk-1) = O gk-1) + T v(k-1). @7

Using the cne-step ahead prediction of the state given by
(4.7), wc replace the linear state feedback law (3.11) by
v(k) = -Flalklk-1)-q,®)] +6,06). 4.8)
The PD type controller accounting the computation delay
consists of the nonlinear compensator (4.3), the state
predictor (4.7) and the linear state feedback law (4.8).

Feedback Gain Determination
Assume that no modelling error exists. Using (3.6),

(3.12), (4.4), (4.7) and (4.8), we can describe the behavior of
the tracking error as

e(k+1) = @.e(k) +T,0(k), 4.9)
0(k) = -Fl4(k|k-1)-q k)1, (4.10
Gle+1lk) - g (k+1) = D e(k) +T,0(k), (4.11)
where
8(k) = vik) - 6,00 . 4.12)
Define the extended tracking error vector as
ek) = [e'k) O'(k)]). (4.13)

Applying the result in [4] to (4.9)—(4.11), we can easily show
that the behavior of the extended tracking error vector is
described by

ek+1) = Q. ek), 4.14)
where
q)T FT
Q. = 4.15
T | -F®, -FT, “13)

If we choose the feedback gain matrix F such that the matrix
(4.15) is asymptotically stable, the extended tracking error
vector converges to zero as k tends to the infinity. It is
interesting to note that the eigenvalues of the error transition
matrix (4.15) consist of the eigenvalues of the matrix (3.14)
and 2n zeros[4]. Consequently, the feedback gains can easily
be determined by the formulas for the design disregarding



the computation delay discussed in the previous section.

5. PID TYPE CONTROLLER ACCOUNTING
COMPUTATION DELAY

The robustness of the PD type computed torque
controller can be improved by introducing the integral action.
For discrete-time lincar systems, Mita[4] has proposed a
novel design of integral controller accounting the
computation delay. This design can be performed using the
solution of the standard regulator problem for a plant. In
addition, Mita and Mukaida[S] have proposed a modified
version of the design based on heuristic argument. Guo et
al.[7] have clarified the relation between the two designs and
have discussed the extensions to the general computation
delay case[8]. Although the purpose of these research is to
provide an efficient method for designing a servosystem
tracking the step reference signal without steady state error,
the resulting algorithm can be used as a state feedback law
with the integral action.

Using the modified version of Mita's design discussed in
[7] as a state feedback algorithm with the integral action, we
propose a simplc and transparent design of the PID type
computed torque controller accounting the computation delay.

State Feedback with Integral Action

Assuming that no modelling error exists and that the
dynamics of the robot manipulator is linearized and
decoupled by the nonlinear compensation (4.3) with the state
predictor (4.7). Then the behavior of the tracking error (3.12)
for arbitrary input v(k) is described by (4.9) and (4.12). To
apply the algorithm discussed in [7], we consider the error
system

e(k+1) = D e(k) + T, d(k), .1

8(k) = He(k), (5.2)
where (k) is defined in (4.12) and
H=[1 0]. (5.3)

Consider the state feedback law with the integral action
defined by

3(k+1) = -Lo(k) - MOK) - Ne(k) +s(k),  (5.4)
s(k+1) = s(k) - MO(k) , (5.5

where L, M and N are appropriate feedback gain matrices to
be determined and s(k) is the nx 1 vector representing the
state of the integrators. Note that the control input v(k)
corresponding (5.4) is given by
V(k+1) = =N,[8(k) -6,(k)] - N,[6(K) -6 (k)]
-L[v(K) -6,0)] + 6 ,(k+1) +s(k+1), (5:6)

where the matrices N, and N, are defined by
N =[N, N]J. 6.7

Note that the algorithm (5.6) with (5.6) admits unit step
computation delay since the control input depends only on

the previous state of the manipulator. The PID type controller
consists of the nonlinear compensator (4.3), the state
predictor (4.7) and the state feedback control law with the
integral action (5.5) and (5.6).

Feedback Gain Determination

To determine the feedback gain matrices L, M and N in
(5.4) and (5.5), we apply the method proposed in [7]. By
this method, we can achieve the cigenvalue assignment
similar to that obtained by the predictor-based PD type
controller discussed in the previous section. This design
method consists of two steps. First, we choose the feedback
gain matrix F defined by (3.10). Then the matrices L, M and
N are determined by the linear matrix equations

[N+MH MIE = [F®; I,+FT,+F®.T,], (58)
L =1 +FT,, (5.9)

where the matrix E is defined as

E = (5.10)

H 0,

n

®,-1, r,]

Substituting (3.3), (3.10) and (5.7) into (5.8) and (5.10), we
obtain

[N,M N, MIE
= [K, 2TK,+K, I,+2TK +TK ], (5.11)

0, -TI, 0,
E=|0 o -TI (.12)
0 0
Note that the inverse the matrix E is given by
0,0, TI
E1=T11'1 0, 0 (5.13)
Oll Ill 0’!

Using (5.13) in (5.11), we can express the matrices M, N,
and N, as

M=K, (5.14)
N, =K +TK,, (5.15)
N, =T +2K, +TK,. (5.16)

In addition, the substitution of (3.10) into (5.9) yields

L=1+7K,. (5.17)
Consequently, the feedback gain matrices in (5.4) and (5.5)
are given by (5.14)—(5.17) which explicitly include the
feedback gain matrices K, and X,.

It has been shown that the closed loop eigenvalues
achieved by the state feedback law (5.4) and (5.5) with the
solution of the matrix equations (5.8) and (5.9) consists of
those of the matrix (3.14) and 2n zeros{7]. Since the
eigenvalue assignment is same as that obtained by the
predictor~based PD type controller with the feedback gain
matrices K, and K, we can conveniently use the simple
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formulas (3.16) and (3.17) to determine the feedback gains
in the PID type controller.

Although the controller given by (5.4) and (5.5) does not
contains the state predictor, we can show that the algorithm
with the matrices satisfying (5.8) and (5.9) includes the state
predictor. It follows readily from the result given in {7] that
the algorithm (5.4) can be rewritten as

8(k+1) = s(k+1) - N[, e(®) +T,0()],  (5.18)
where the matrix N° satisfies the relations
N = N®,, L = N°T,. (5.19)

The existence of the matrix N’ satisfying (5.19) is
guaranteed[7]. Note that the last term in (5.18) contains the
one-step ahead prediction of the tracking error.
Consequently, the controller given by (5.4) and (5.5) with the
matrices satisfying (5.8) and (5.9) can be regarded as a
predictor-based controller.

6. SIMULATION EXAMPLE

To illustrate the performance of the proposed controllers,
we present simulation 1esuits for a simple robot manipulator.
Consider a planar two-link manipulator shown in Fig. 1,
which has two revolute joints and the motion is restricted in
the X-Y plane. We assume that the direction of the gravity
is negative direction of the Y axis. The length and the mass
of the each link are given by

[, =1, = 0.4{m], m; = 5.4[kg], m, = 3.6kg). (6.1)
In this simulation, the dynamic behavior of the robot
manipulator is computed by the fourth order Runge-Kutta
method[3] with the discretization step 0.1{msec]. We assume
that the digital controllers are implemented using a processor
with the sampling period 7=10{msec].

my

A

Fig. 1 Two-link planar robot manipulator
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(A) PD TYPE (B) PID TYPE

Fig. 2 Comparison of trajectories

The reference trajectory for the tip of the manipulator in the
X-~Y plane is given by

X(r) = 30-10 cos{lOV[t—T(l-e";)]} C L (62)

Y(&) = 55+ 10sin{10Vt-T(1-¢ 7)]},

where

V = 20m/199 [m/sec] . (6.3)
The above reference trajectory requires that the tip of the
manipulator draws a circle with the radius 10{cm] centered
at the point (30, 55)[cm] in 2 seconds.

It is found by numerical simulations that the controllers
disregarding the unit computation delay 7=10[mscc] can not
be used effectively under the existence of the delay. Even if
the correct physical parameter is used for the design, the
controllers disregarding the computation delay can stabilize
the closed loop system only for small feedback gains. To
implement a digital controller with the rather slow sampling
period T=10[msec], the designs accounting the computation
delay are required.

The PD and PID type controllers accounting the
computation delay are designed using erroncous data. For
simplicity, we assume that the errors have uniform
percentage for all the pliysical parameters. In the case that no
modelling error exists, the exact tracking to the reference
trajectory can be achieved by both controliers. For 10 percent
overestimation error of all the physical parameters and the
feedback gain matrices

K, = diag[20 20), K, = diag[10 10], (6.4)

comparison of the trajectories in the X-Y plane and that of
the evolution of the tracking errors are shown in Fig. 2 and
Fig. 3, respectively. The effect of the parameter error on the
maximum tracking errors in the X-Y plane is summarized
in Fig. 4 for the feedback gain matrices (6.4) and

K, = diag[2 2], K, = diag[1 1]. (65
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Apparently, the PID type controller is superior to the PD
type controller in the robustness against the physical
parameter variations. Note that both controllers assign the
same eigenvalues. The PID type controller designed by use
of the feedback gain matrix (6.5) provides more robust
performance than the PD controller with the feedback gain
matrices (6.4).

7. CONCLUSIONS

Based on the simple discrete-time model of a robot
manipulator obtained by Euler's method, we have discussed
the direct digital designs of the PD and PID type computed
torque controliers. Considering the digital implementation,
we have proposed the designs accounting the computation
delay. The resulting controllers contain the state predictor to
compensate the delay. For both types of controllers, the
identical simple formulas are useful to determine the
feedback gains. The effectiveness of the proposed designs
has been demonstrated by the simulation. In particular, the
simulation results have shown the remarkable robustness of
the PID type controller against physical parameter variations.
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