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Abstract

Burrs, created when metals deform plastically, are by-
products of most mackining processes. The increasing re-
quirements of precision and reliability in manufacturing pro-
cesses have led to the development of systems for automated
deburring. In this paper the motivations and requirements
for automated robotic deburring are discussed. Also, the fea-
sibility of automating the deburring process using fuzzy logic
controller is investigated. In implementing the fuzzy logic
controller, particular attention is paid to the acoustic emis-
sion sensing for the characterization and feedback control of
the burr removal process. The results of the experiments re-
veal the rule based control scheme based on fuzzy logics can
be a good alternative to traditional control schemes.

1

Burr formation is an unavoidable and undesirable by-product of most
metal cutting or shearing operations due to the plastic deformation
of metals. Deburring is typically done by human laborers. They
move a motor-driven tool along the part, trying to establish a small,
constant chamfer along the part edge. In the process, they use their
senses of vision and touch, and their previous experience to ensure
that the entire burr is removed. It may sometimes take several passes
to get satisfactorily deburred edge.

Improving the quality and efficiency of deburring is of ma-
jor concern to manufacturers. Deburring is labor intensive and can
represent as much as 35 percent of the total component cost [6].
In addition, deburring is commonly a dirty, noisy and monotonous
job with high personnel turnover rate {10]. These reasons have moti-
vated the development of automated deburring systems. To allow for
the required flexibility of today’s manufacturing cell, these systems
are being implemented using computer numerical control machines
(CNC) or industrial robots.

Simple open loop deburring is not a feasible alternative due
to the uncertainties in burr size and part demensions, and due to
the limited accuracy of robots. Thus, monitoring of the deburring
process with some sort of sensor is neccessary. If the sensor output
can be realted to the chamfer size, one can obtain a deburred part
with little variation in the size of the chamfer by implementing a
controller using the sensor output as a feedback signal.

Force sensors have been used predominantly in closed loop
deburring applications. In this study, however, the use of acoustic
emission (AE) feedback for robotic deburring has been investigated,
and the results are presented and discussed.

Modern control theory has proven to be very successful in
areas where systems are well defined, but it has fallen short to cope
with the practicalities of many industrial processes in spite of the
development of a very large body of mathematical knowledge [13).

Complexities of processes, presence of non-linearities, varia-
tions in model parameters, poor quality of available measurements,
and limited computer power are some of the reasons that account for
the difficulties in implementing rigorous control algorithms in real in-
dustrial applications. Despite this, in many cases these systems are
effectively controled by human operators by qualitative reasoning
about the behavior of the process.

Zadeh {16] proposed the use of fuzzy algorithms based on fuzzy
set theory as a means of incorporating the qualitative and approxi-
mate characteristics of human decision-making into automated con-
trollers. Since then, fuzzy control has emerged as one of the most
active and promissing areas for research in the application of fuzzy
set theory and control in general. Current applications of fuzzy con-
trol include elevator control, water quality control, automatic train
operation systems, automobile transmission control, and nuclear re-
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actor control {9].

Fuzzy logic cntrol is a knowledge based control strategy that
is suitable when it is impossible to formulate an analytical model of
the process to be controlled, or when specification of a precise mea-
sure of performance is not neccessary. The fuzzy linguistic control
can be applied to manufacturing processes such as deburring whose
complexity exeeds the limitations of analytic modeling tools.

In this paper, the feasibility of implementing fuzzy logics con-
troller using AE feedback for automation of deburring process is
investigated.

2 Acoustic Emission Feedback

Acoustic emission is a recently developed methodology for fault diag-
nosis and location in nondestructive testing and process monitoring.
It refers to the stress wave generated by a solid undergoing phase
transitions, plastic deformation or fracture. These phenomena cause
a dynamic variation of stress and strain fields in the medium which
propagate as stress waves. These waves travel to the surface of the
medium originating minute displacements detectable by a sensitive
piezoelectric crystal that transforms the displacement or velocities
into an electric signal which is then amplified and processed. Acous-
tic emission has been shown to be sensitive to different characteristics
in manufacturing including chip formation, tool wear and fracture
monitoring, and friction and contact phenomena for surfaces [2]. The
power of the acoustic emission signal during machining is a function
of the material properties, tool geometry and process parameters.
The signal depends mostly on the material removal rate (MRR), slid-
ing friction between chip and tool rake surface, and sliding friction
between workpiece and tool flank surface [12]. For operations such
as grinding, surface finishing and deburring, where the chip size is
significantly smaller than the tool/workpiece contact area, the power
of the AE signal depends mainly on the MRR.. Kannatey-Asibu and
Dornfeld [5] showed that the AE signal is linearly proportional to
the MRR.

Cai and Dornfeld [3] first explored the pctential use of AE for
monitoring grinding. In this work, the rensitivity of the AE signal
to wheel approach, contact and sparkout was determined. Masaki
[12] evaluated the sensitivity of the AE signal to the different pa-
rameters involved in a chamfering operation in the presence of small
burrs. His result - showed that the AE-RMS energy signal is linearly
proportional to the resulting chamfer on a workpiece, provided that
the burrs’ heights did not exceed the chamfer’s size. He also de-
termined that the AE signal is very sensitive to the initial contact
between tool and workpiece. This can be very useful in controlling
the tool engagement in deburring. Masaki’s work, later supported
by Hwu's [4], demonstrated the feasibility of using AE as a feedback
signal for the control of the tool position relative to the workpiece
during a deburring operation.

It has been determined that for metal cutting processes, the
Jevel of acoustic emission generation is a function of the rate of energy
consumption. For the deburring process, since the chip size is small,
the power of the AE signal, averaged over a time interval, is affected
nredominantly by the material removal rate (MRR):

AE — power = ax MRR (1)
The constant a depends on numerous parameters including tool con-
dition, tool geometry, and material properties.

In the experiments by Masaki [11), a rigid rotary file was used
to create a 43° chamfer on the workpiece. As long as the size of
the burr is small compared to the chamfer size, the contact area is
nearly equal to the area defined by the region 1 in Figure 1. This
area, the areca of the chamfer, is proportional to the square of the
depth of cut. Therefore,



AE ~ power = ¢ * DOC? (2)

The time average of the acoustic emission power is defined as
the square of the root mean square energy of the AE signal:

AE — power = L / (AE — signal)®dt (3)
TJr
or,
AE — power = (RMS — AE)? (4)
Equating equations (3) and (5) gives
RMS — AE =dx DOC (5)

where d = ¢!/2

Masaki showed that this realtionship to hold in fixed spindle
deburring tests, and one of the goal of this investigation is to deter-
mine its validity when the tool is attatched to the end effector of a
compliant robot arm.

3 Fuzzy Logic Controller
3.1 Fuzzy Sets

In this section we briefly review the basic features of fuzzy set theory
and its ability to manipulate linguistic data.

The idea of fuzzy set, introduced by Zadeh [15] allows impre-
cise and qualitative information to be expressed in an exact way, and
, as the name implies, it is a generalization of the ordinary notion of
a set. Consider the statement:

temperature is high.
where temperature may take on values within the interval {100-200].
One may interpret this statement in the context of classical set the-
ory by selecting a subset of this interval such as [135-165] an assigning
the label high to it. This can be expressed in terms of a membership
function, y which can take values of either 0 or 1. If 4(T) = 0, then
the temperature T is not a member of the set, if u(7°) = 1 then it is.
Graphically, this might be represented by the rectangular function
shown in Figure 1. However, this definition is missing the intuitive
sense of the label high. The full meaning of high cannot be cap-
tured by this explication which requires sharp and clear definitions
of set boundaries. An alternative interpretation using the notion of
a fuzzy set is illustrated in Figure 1. Gradual, rather than abrupt
loss of membership to a set is the most important assumption of the
fuzzy set theory. The membership function of a set takes on values
in the whole interval [0,1], in contrast to the binary valued classical
set theory.

Fuzzy sets may be combined in a similar way to ordinary sets
by means of the following definitions [14]: The union of two sets,
A + B is defined by:

na+B(z) = max(pa(z), pa()) (6)
The intersection A x B is defined by:
#a-8(z) = min(pa(z), pa(z)) (O]
Negation A, is defined by:
bi =1 - palz)) (8)
3.2 Approximate Reasoning
Consider the statement:
If Xis AthenY is B (9)

where A and B are subsets of U and V| respectively. Given the fact
that X is A’, we may infer using classical logic that Y is B, if and
only if A’ is a subset of A, in which case B’ is B, otherwise nothing
can be inferred. However, if we interpret the rule using fuzzy set
theory, A’ does not need to be a subset of A. The extent to which
A’ is a subset of A, determines the extent of truth of the premise of
the rule. The result of this inference, B, is shown in Figure 2.

Formally, B’ is defined using the compositional rule of infer-
ence [14]:

B =A"oR (10)

or

)]

g (v) = max(min(ua (u), ua(y, v)))
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where pg(u,v) is defined by:
#r(u,v) = min(pa(u), s5(v)) (12

and R is a fuzzy relation, a fuzzy subset of U/ x V, and denotes the

mathematical formulation of the given rule using fuzzy set theory
[15].

In the case where several rules must be used:

If Xis AjthenY is B;, i=1,..,n. (13)

where A and B are fuzzy subsets of U and V, respectively, the rules
are described by a fuzzy relation R as follows:

R=UR.~

Hr(u,v) = max ppi(u,v)

(14)

(15)

An example of fuzzy inference based on two rules is shown in Figure

3.3 Structure of a Fuzzy Logic Controller.

‘The basic configuration of a fuzzy logic control system (FLC) is
shown in Figure 3. The system consists of four principal components:
a fuzzification interface, a knowledge base, a decision-making logic
or inference engine and a defuzzification interface [9].

In general the output of the process is not fuzzy, because its
value is singularly determined through some measurement. For the
purpose of the fuzzy inference, crisps values must be converted into
fuzzy variables using a fuzzification interface.

The knowledge base is composed of two components, a data
base and a fuzzy control rule base. The data base provides the
definitions which are used to specify linguistic control rules and fuzzy
data manipulation in a fuzzy logic controller. These definitions are
subjective in nature, and are based on experience and engineering
judgement.

The rule base characterizes the control goals and control policy
of the domain experts through a set of linguistic control rules. The
expert knowledge is usually of the form:

if (set of conditions are satisfied)
then (a set of consequences can be inferred)

The antecedents and the consequences are associated with fuzzy con-
cepts presented in linguistic terms using fuzzy sets to describe the
magnitude of the control variables. Typically, the control variables
used in the implementation of a fuzzy controller are the process er-
ror (difference between set-point and output), change in error, and
input. The fuzzy sets have linguistic meaning such as NB: negative
big, NM: negative medium, NS: negative small, ZE: zero, PS: posi-
tive big, PM: positive medium, and PS: positive small. Example of
fuzzy control rules is [8]:

Ifeis NS andceis Z, then uis NS (16)
where:
e=r—y(error)
r = setpoint
y = output

ce = change in error (ex — ex_1)
du = change in input (up — up_y)
NS, Z : linguistic fuzzy sets

The decision-making logic, sometimes referred as inference en-
gine, is the kernel of the fuzzy logic controller. It has the capability
of simulating human decision making based on fuzzy concepts and
inferring fuzzy control actions using fuzzy implication and the rules
of fuzzy inference described in the previous section.

Defuzzification is necessary in order to apply a crisp control
action to the process. The result of fuzzy inference however, is in
general a fuzzy subset. A number of approaches for defuzzification
have been proposed [8] such as mean of max and centroid of area.

4 Experimental Setup

The experimental setup used in this investigation is shown in Fig-
ure 4. A Fanuc S108 five-axis robot was used to hold a die grinder
at a 45° angle in order to achieve the chamfer shape desired. Work-
pieces made from 0.5 inch by 1 inch (12.7 mm by 25.4 mm) 6061-T6
aluminum bar stock were mounted on a rotary table which allowed a



simple way of changing the orientation of the workpiece. An acoustic
emission sensor attached to the workpiece holder picked up the AE
generated during deburring. ‘The tool holder was designed to allow
attachment of a JR3 force torque transducer between the wrist and
the tool. The serial and parallel connections allowed communication
between the robot controller and the host computer, an IBM PC-AT.

Through the serial port, the computer was made to send to
the robot sets of joint angles for positioning of the deburring tool as
desired. One of the requirements of this research was the ability to
stop the robot when the workpiece edge was detected. In order to
provide this capability, a relay circuit was inserted in paralle] with
the existing start and hold switches on the controller panel. These
were activated by pulsing bits on a parallel port of the computer.

One limitation of the robot which had to be considered was
that it had only five, not six, degrees of freedom. For this reason,
not all points in the robot’s workspace can be reached with the ori-
entation axes as desired. Craig (1] states that with a five degree
of freedom robot, the pointing axis of the tool attached to the end
effector must lie in the vertical plane of the robot arm. In order to
create a 45° chamfer and at least have the point of tool/workpiece
contact in the plane of the arm, a complicated tool holder would
have been necessary. Instead, a short software algorithm was written
which projects the Cartesian coordinates of the contact point onto
the plane of the arm. The coordinates of the projection are used to
calculate the proper joint angles. This allowed a much simpler tool
holder to be used.

The deburring tool used in these experiments was a electric
die grinder (Makita) with a spindle speed of 25,000 rpm. The bit
used was a carbide-tipped rotary file with a quarter-inch diameter.

A diagram of the acoustic emission signal processing is shown
in Figure 5. The output of the AE sensor is amplified by a pream-
plifier (40 dB) and an amplifier (39 dB). The amplified signal is
then filtered by an RMS meter with a2 25 ms time constant. The
RMS meter was made in the lab and is based on the Analog Devices
637JD RMS chip. The output of the RMS meter is connected to a
stripchart recorder and to one of the A/D channels of the DACA
board attached to the computer.

The AE-RMS voltage tends to have fairly high frequency com-
ponents. It is desired to remove these components since they are
caused by surface variations on the workpiece and are not related to
the depth of cut. A first order digital filter was employed for this
task. A weighting parameter is used to create a “fading memory.”
A running total of the sensor readings was kept:

sum(k) = y(k) + weight * sum(k - 1) 17)

where y(k) is the sensor output at sampling interval k and weight
is the weighting parameter mentioned above. The weight is also
summed in a similar manner:

sum_of weight(k) = 1+ weight * sum_of weight(k — 1) (18)
Finally, the digital filter output s(k) is found as follows:

sum(k)

) = o weight(E) o

It was found that a weight of 0.9 followed the general trends of
the AE-RMS signal very well, but eliminated the high frequency
components.

A fuzzy logic controller used in this study calculates the changes
in control input (feed in the direction perpendicular to the tool move-
ment}, fu, based on the error (difference between set-point and out-
put) in RMS-AE, ¢, and the change of the error, ce. It was imple-
mented with the following 25 rules:

¢ Rule 1-4. If just started, begin to apply control:

— if e is SP and ce is SP then du is SP.
— if e is LP and ce is LP then éu is LP.
~ if e is LN and ce is LN then 8u is LN.
— if e is SN and ce is SN then éu is SN.
e Rule 5-8. If error is not changing, keep input proportionally
high
— if e is SP and ce is Z then 6u is SP.
— if e is LP and ce is Z then u is LP.
— if ¢ is LN and ce is Z then éu is LN.
— if e is SN and ce is Z then §u is SN.
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Rule 9-12. If going in right direction, keep the control same:

— if e is SP and ce is SP then du is Z.
— if e is LP and ce is SP then 6u is Z.
— if e is LN and ce is SN then 6u is Z.
— if e is SN and ce is SN then 6u is Z.

Rule 13-16. If getting worse, speed up a bit:

— if e is SP and ce is LP then éu is LP.
~ if e is LP and ce is SP then §u is LP.
— if e is LN and ce is LN then éu is LN.
— if e is SN and ce is SN then 6u is LN.

Rule 17-20. If moving too fast, slow down a little bit:

— if e is SP and ce is LN then 8u is SN,
— if e is LP and ce is LN then §u is SN.
— if e is LN and ce is LP then §u is SP.
— if e is SN and ce is LP then §u is SP.

Rule 21. If reached steady state, keep the control same:

~ if e is Z and ce is Z then éu is Z.

Rule 22-23. If error is small but changing slightly, wait and
see:

— if e is Z and ce is SP then éu is Z.
~ if e is Z and ce is SN then 8u is Z.

Rule 24-25. If error is small but changing significantly, take
action:

— if eis Z and ce is LP then 6u is SP.
~ if e is Z and ce is LN then éu is SN.

where fuzzy sets, LP(Large Positive), SP(Small Positive), Z (Zero),
LN(Large Negative), SN(Small Negative), were defined based on nor-
malized values of e, ce and u, respectively.

5 Experimental Results

To verify the sensitivity of the AE signal to the tool-workpiece con-
tact and the relationship between the RMS-AE and the resulting
depth of cut, and to test the performance of the fuzzy logic con-
troller, two series of deburring experiments were conducted.

As originally demonstrated by Masaki [11], acoustic emission
is very sensitive to initial contact between a tool and a workpiece.
A typical AE spike due to initial contact is shown in Figure 6.
This knowledge was used to develop an edge detection routine which
would stop the robot when the part edge is contacted. The point of
the first contact between the tool and the workpiece was established
by advancing the deburring tool which is attatched to the robot ma-
nipulator toward the workpiece until an AE spike is detected. This
method, compared to visual observation, was proved to be more ac-
curate and reliable in determining the point of the first contact. The
acoustic emission signal was sampled at 2 ms while the robot was
moved toward the workpiece. The speed of the robot during edge
finding was 3.94 in/min. When a spike in RMS-AE is detected the
robot was designed to stop. This edge-finding routine was found to
work very well. Using the sampling and feed rates given above, the
robot motion stopped when the depth of cut was about 0.028 inches.
For other tests, the sampling rate was increased from 2 ms to 1
ms, and the feed rate was slowed from 3.94 in/min to 1.97 in/min.
With sampling in eflect quadrupled, the robot stopped at a depth of
around 0.021 inches.

Then, the robot manipulator was advanced further to the de-
sired depth of engagement, and the deburring action was started by
a start pulse upon user’s command at the feed speed of 0.5 in/min.
The acoustic emission signal was read at a 3 ms sampling rate. At
the feed speed used, this corresponded to about one sample every
0.0015 in. When the deburring tool is moved along the edge of the
workpiece the depth of engagement was regulated by the fuzzy logic
controller using the RMS-AE feedback.

After cut was made, the depth of cut was measured using a
microscope. In observing the workpieces after deburring, the cham-
fered surface had a fairly smooth surface with no secondary burrs.
Therefore, the speed was not so fast as to initiate chatter. The depth
of cut was measured every 0.05 inches along the workpiece.



Figures 7 and 8 show representative plots of AE-RMS voltage
and depth of cut versus deburring distance in a constant reference
input case and in a linearly increasing reference input case, respec-
tively.

In the first set of experiments, the reference input for RMS
AE was a constant (2 volts) so that the depth of cut is regulated at a
constant (about 0.017 in). According to the Figure 7, the RMS-AE
level is kept close to the desired value by the fuzzy logic controller.
Also, the depth of cut is well regulated to a constant due to the linear
relationship between the RMS-AE and the depth of cut as shown in
Figure 7. Tt is evident that the AE output is closely related to the
depth. The general trends of the two plots match very well.

Figure 8 shows AE-RMS plotted against depth of cut. From
this graph, the expected linear relationship is apparent. The RMS-
AE level increases linearly proportional to the depth of cut with
relatively little scatter. A linear regression computed through the
origin indicated a slope of 0.195 volts per mil and a correlation factor
of 0.93. The combined data from several other tests gave a slope of
0.183 volts per mil with a correlation factor of 0.85. This indicates
that further testing and evaluation need to be done in order to reduce
the amount of scatter.

In the experiment, the AE-RMS voltage did not increase sub-
stantially for depths of cut above 0.050 inches. This is most likely
due to the fact that the assumption of small chip size is no longer
valid and that changes in contact characteristics have occurred.

Also, while most of the plots of AE-RMS versus depth of
cut had a nearly constant slope for the entire distance, some had
a higher slope at the very beginning of the cut which quite suddenly
decreased. This is most likely due to the fact that the workpiece
did not have sharp corners. Instead, they were somewhat rounded.
Thus, at small amounts of engagement, the chamfer size increased
dramatically as the tool moved deeper into the workpiece.

In second series of experiments, the reference input for RMS-
AE was linearly increased, so that the initial RMS AE is 1 volt, and
the final RMS-AE at the point 2 in. away form the initial contact
point is 4 volts. A typical AE-RMS plot in this series of experiments
are shown in Figure 9(a). In the figure the RMS-AE level follows
the linearly increasing reference input with more fluctuations than
in the constant reference input case. Figure 9(b) shows the resulting
depth of cut profile as obtained by measuring the depth of cut at
40 points along the chamfer. Again, an exellent correlation between
the RMS-AE and the chamfer size profile is observed.

6 Conclusions

Several conclusions can be drawn from the resu'ts of the experiments
conducted in this study. The first is that the AE-RMS signal pro-
vides an excellent means of detecting contact between a tool and
workpiece. The sudden rise in acoustic emission is easily detected
by the controller computer. The speed at which the robot decelerates
is the presiding factor affecting the resultant depth of engagement.

Another conclusion is that AE-RMS is proportional to the
depth of cut in robotic dsburring. The additional compliance of the
robot arm had no noticeable effect on the linear relationship. As
discussed above, the AE-RMS voltage appeared to level off once the
depth of cut reached 0.050 inches. This, however, should not be a
major problem since the chamfer created by deburring operations is
usually desired to be below this size.

A third conclusion that AE-RMS can be used for controlling
depth of cut in robotic deburring due to the good linear relationship
between the RMS-AE and the depth of cut.

Fourth conclusion is that a fuzzy logic controller for robotic
deburring that takes advantage of the positive characteristics of AE
sensor can be implemented successfully. Unlike traditional logic sys-
tems, fuzzy logic is much closer in spirit to human thinking and
natural language. The fuzzy logic controller (FLC) methodology
provides a means of converting a linguistic control strategy, based
on expert knowledge, into an automatic control scheme. This ap-
proach seems particularly appropriate to deburring, a process that
can be successfully controlled by a skill human without the knowl-
edge of its underlying dynamics.
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Figure 1 Membership functions for ”Crisp Set” and ”Fuzzy Set”.
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