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Abstract

In this paper we present how the deviation bound,
which is a synchronic variable, can be used for checking
liveness in Petri nets. Also, the deviation bound will be
applied to detect or avoid deadlock situations and to
characterize concurrency against sequential behaviors in
automated manufacturing systems. In the current stage, we
restrict the applicable domain of these methods to the Petri
net structure that can be synthesized by combining common
transitions or common places or common paths of Live-and-
Bounded circuits.

1. Introduction

Petri net theory has been deveioped considerably since
its origin by C. A. Petri in his 1962 Ph. D. dissertation on
the study of the communication protocols between the
components of a computer system. Since then Petri nets
have become well known as a suitable tool for the modeling
and analysis of Discrete Event Dynamic Systems.

Modeling a system using Petri nets has many advantages
compared to other modeling schemes such as Markov
chains, Queuing models, and general discrete event
simulation languages. The graphic representation of Petri
nets makes the maodels relatively simple and legible, and the
well developed analysis methods such as invariant analysis
and reachability tree can detect certain anomalies of system
behaviors. Furthermore, the constructed models using Petri
nets can be directly applied for realizing control system
software. Because of the various advantages mentioned
above, Petri nets have been widely used to model various
domains such as circuit analysis, communication, computer
systems, manufacturing systems, and knowledge
representation.

Although Petri nets are supported by well developed
mathematical theories, the analysis methods for Petri nets
have some drawbacks. If the modeled system is large, we
will be confronted by an inherent complexity problem. It is
well known that a major weakness of Petri nets is the
difficulty of analyzing large Petri nets. In other words, the
set of all reachable markings of large Petri nets cannot be
analyzed in practice. Reduction and synthesis methods have
been suggested to cope with this problem. The details of the
previous works related to reduction and synthesis methods
of Petri nets are described in {11].

The concurrent flow of multiple sub-processes is one of
the vital characteristics of automated manufacturing systems.
Deadlock is a side issue if the sub-processes in automated
manufacturing systems do not require shared information or
shared resources during their operations. Usually many sub-
processes compete for a finite number of shared resources.
This often leads to a deadlock situation.
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In an improperly designed automated manufacturing
systems, the only remedy for deadlock may be manual
clearing of buffers or machines, and restart of the system
from an initial condition which is known to produce
deadlock-free operation under nominal production
conditions. Both the lost production and the labor cost in
resetting the system in this way can be avoided by proper
design [21]. The cooperation between sub-processes must
be controlled to ensure correct operaticn of the overall
system.

These problems can be solved by designing deadlock-
free systems. Although each unit of the system functions
normally, the system as a whole may have some critical
synchronization errors (e.g., deadlocks). The trivial solution
for avoiding such errors is to prohibit shared resources.
However, from the point of view of ¢ptimizing resource
utilization, this approach is not satisfactory. The approach in
this paper is to develop systemaiic synthesis methods by
calculating synchronic variables, which can measure the
mutual dependency between two sub-processes, especially
when the shared resources exist between sub-processes. If
the interactions (dependency) among sub-processes are
properly controlled, then deadlock situations can be avoided.

The synchronic concept was introduced by C. A. Petri
[17] using synchronic distance for measuring dependency
between the firing of transition subsets. The notion of
synchronic distance was originated from the S-completion of
condition/event systems [6]. According to Dr. Petri, all
properties of a system should be able to be described in
terms of synchronic distances. However, it is known that the
case is true for some classes of Petri nets, but not for all
classes of Petri nets.

Since the 1, many different definitions and notations have
been used to investigate synchronic concepts. Four
synchronic variables: Deviation Bound(DB), Fairness
Bound(FB), Synchronic Lead(SL), and Synchronic Distance
(SD) have been formulated.

Synchronic variables are rarely used for designing or
analyzing real systems although some directions are shown
in [6]. Some implementation of synchronic concepts has
been accomplished, but more work is required. Kluge and
Lautenbach [9] use the weighted synchronic distance to
design a dynamic priority scheme for resolving multiple
conflicts (memory access allocation) among competing
channel processes in high-performance computer systems.
This approach is different from other methods usually used
in computer systems. It is neither probabilistic nor
deterministic nor priority-oriented, but well defined and
deadlock-free.

Synchronic variables can also be applied to detect or
avoid deadlock situation and to characterize concurrency



against sequential behavior in certain circumstances. In an
automated manufacturing system, resources and information
are shared among several processes. This sharing should be
controlled or synchronized to insure the correct operation of
the overall system.

Kanban, another name for the Just-in-Time policy is a
way of introducing a synchronic distance between a pair of
operations [18]. This policy was proposed in Japan to
minimize in-process inventories. The synchronic values of
two operations in a Just-in-Time policy should be calculated
and controlled. Intuitively, we know that the control of
synchronization is very important in the Just-in-Time policy.

Deadlocks in manufacturing systems have been studied
in Petri nets without using synchronic variables. Banaszak
and Krogh [1] developed a Petri net model of concurrent job
flow and dynamic resource allocation in an FMS and
presented deadlock avoidance algorithm by introducing the
notion of a restriction policy, which is a feedback policy for
excluding some enabled transitions from the current resource
allocation alternatives. They provide three FMS examples for
the illustration of their algorithm. They show that the
conventional deadlock avoidance algorithm mainly used in
computer operating systems are not efficient for
manufacturing systems.

This paper describes the interactions between sub-
processes, which frequently appear in manufacturing
environments, using deviation bound. The interactions
studied in the context of Petri nets are common places,
common transitions, and common place and path(Transition-
Transition-Path). Usually, the first represents “OR”
operations, the second “AND” operations, and the last
represents shared resource operations.

2. Synchronic Variables and LB-Circuit

In this section, we explain the basic concept of
synchronic variables and introduce a Live-and-Bounded
Circuit (LB-circuit) that can describe a primitive activity unit
in manufacturing systems. We assume that the reader is
familiar with basic Petri net theory. Because of many
different notations used in literature, the definition of a Petri
net is reviewed. For details, please refer to [14, 16].

A Petri net N is defined by a 5-tuple, N=(P, T, I, O,
my), where:
(1) P={p1, p2, -, Pm}, 2 finite set of places, m=0.
(2) T={ty, ta, ..., ty}, a finite set of transitions, n=0, such
that PMT=0.
I: T --> N™ is an input function, N is a non-neygative
integer.
(4) O: T -->N™is an output function.

(%)
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moe N™ is an initial marking.

Four synchronic variables mentioned before are
originated from the synchronic distance. Therefore, we will
explain the notion of the synchronic distance first, and give
the formal definition of the deviation bound that is used for
measuring liveness of systems in this paper. The concept of
the synchronic distance is intuitively explained as follows.

The synchronic distance between (t, t2} and {t3, ta})
shown in Figure 1(a) is calculated by adding the place s
shown in (b) such that *s={t;, t}, s*={t3, t4}. Then the
capacity of tokens of the place s at least should be 2, when
mg(s)=0. Because, whenever t; and t; fire, each transition
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Fig.1 Synchronic distance (a) Original net (b) Modified net

puts a token into the place s, and by subsequent firing of t3
and t4, the two tokens in s are removed again, therefore we
find the variance of the number of tokens of the place s will
never exceed 2. This maximal variance of the number of
tokens on s is called the synchronic distance between {t, t7})
and {t3, t4}.

If we change the initial marking of Figure 1(a) such that
mo(P)=[0, 0, 1, 0]T and hold the iritial marking of the place
s, then the behavior of the original net is changed. The
original net is live and bounded, but the modified net is no
longer live. To be consistent with the previous case, we put
one token in the place s. This does not affect the maximal
variance of the number of tokens in s. The synchronic
distance between {1j, 2} and (i3, t4} remains 2. The
synchronic distance is considered the maximal variance of
the number of tokens in the place s while maintaining the
system behavior of the original net.

The synchronic distance between t; and t; for the choice
node shown in Figure 2 can be calculated in the same
manner as above.
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Fig. 2 Synchronic distance for a choice node (a) Original
net (b) modified net

To preserve the system behaviors of the original net shown
in Figure 2 (a), we should initially place a token in s shown
in (b). The synchronic distance in this case is 1. If we
assume that the above system is cyclic, then the synchronic
distance is 2. Synchronic distance can be interpreted as the
minimum token capacity of the place s while the system
behaviors are not changed.

A synchronic distance of 1 means that two events can
only occur alternately. A synchronic distance of 0 means
“coincidence”, meaning that the related input events and



output events are not distinguishable from each other in time
and space, and this is only possible if two sets of events are
equal [6].

Deviation bound (DB) can be explained in the same way
with the synchronic distance. The difference is that the
second variable should not be fired in the case of the
deviation bound. For example, the deviation bound between
{t1, t2} and {t3, t4} shown in Figure 1 is the maximum
number of tokens in the place s without firing the set of
transitions {t3, t4}. In the following, the formal definition of
Deviation bound(DB) is described from the literature [18].

Deviation Bound (DB)
DB(T;, Tj)=sup{o(T;)}| ce L(N,M), Me R(N, myp), 6(Tj)=0]
where g:A firing sequence; G: A characteristic vector (Firing

count vector); 6(t;) : Number of occurrences of t; in ©;

T; : Subset of T; o(T; )- E 0(
G
L(N, mg): The set of all ﬁnng sequences from mg.

We first introduce the concept of a Live-and-Bounded
Circuit (LB-Circuit) in Petri nets and later formally define the
LB-circuit. Let us consider the Petri net with two transitions
t1, t2 and one place p; as shown in Figure 3. The transition t;
produces five tokens and the transition t; consumes two
tokens when these two transitions are fired once. We define
an arc ratio as the integer part of this
production/consumption ratio.

If the arc ratio is less than one and 1, fires once, then the
transition t; cannot be enabled. If the arc ratio is greater than
two, then the transition t; can be fired more than two times
(two-more enabled). If the arc ratio is exactly one, then the
transition ty can be enabled just once. The remaining tokens
in the place p; (the remainder of the arc ratio) cannot
contribute to firing the transition t; when the transition t; is
fired once. However, these remaining tokens are closely
related to the boundedness of the net if the net is a circuit.
We also know that the remaining tokens are not related to the
liveness of the net if the net is a circuit.

The arc ratio ry; between two transitions t;, t; and the
place p; is calculated by

r12=INT(O(p1,t1) /I(p1.t2))
r12=0

lf I(p1,t2)=0,
f I(p1,t2)=0.

The remainder s;2 between two transitions ty, t and the
place py is calculated by

$12=MOD(O(p1,t1) /1(p1,t2)) lf O(Pl,tl) Mp1.2)21,
$512=0 O(p1.t1) /H(p1.t2)<l.
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Fig. 3 An arc ratio rj2=2, and a remainder sj2=1.

If we serially add the place p; and the transition t3 as
shown in Figure 4, then the arc ratio ry3 is calculated by

r13=INT(r12xO(p2,12)/1(p2,13))
r13=0

lf I(P2J3 )*O
(p21t3)_
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Also, the remainder s;3 is calculated by

$13=512+MOD(r12xO(p2,t2)/1(p2.13))
if ryp XO(pg.!;)/](pz,t;;)Z 1,

$13=812+112%O(p2,12) if r12xO(p2.tz) /l(p2,ta)<l.

t p] t2 p2

2

Fig. 4 An arc ratio ry3=1, and a remainder s13=1.

In the same way mentioned above, we can recursively
calculate an arc ratio r;, and a remainder sy;, as follows.

Arc Ratio and Remainder

The arc ratio 11, and the remainder sy, of an alternating
sequence of transitions and places, tip1tzp2 -.tiPi-- Pn-1ta
(the first node and the last node should be transitions) are
defined as follows.

rln—INT(rln IXO(pn Ltn1) /I(pn-l,‘n)) if [(pn-ls[n)) #0,
rln‘O lf l(pn 1» ln))

Z L $1i*MOD (1101 xO(pa-1:tn-1) /1(Pn-1,tn))
lf 101 XO(Pn-1:tn-1) /I(Pa-1.n)21,

2 $1i #1101 XO0(Pn15tn-1)

lf 1010 15tn-1) A(Pn-1,ta) <1

Using the arc ratio and remainder, we define an LB-circuit as
follows.

LB-Circuit
An LB-circuit is a directed path t;pt2p2 ..tipj.. th+1, such
that

(1)  t=tpe.
(2) =l 81 =0.
3) the circuit is live.

An LB-circuit represents a primitive activity unit of the
overall system. The complex behaviors of entire systems can
be described by combining LB-circuits fused along common
transitions or places or paths. In the next section, we present
how the interaction between sub-systems are described by
deviation bounds. Our methods concentrate on preserving
liveness and boundedness of systems, which are the
minimum necessary conditions for automated manufacturing
systems.

3. Measuring Liveness Using Deviation Bound

In this section we present a theorem which can measure
the liveness level of the combined net if the liveness-level of
each of the sub-nets to be fused by common places or
common Place-Place-Path is known. Because of the lack of
space, the theorem is presented without proof. We also
show that the theorem can be used for synthesizing sub-Petri
nets. Then, we describe the interactions between sub-Petri
nets fused by common transitions using deviation bounds.
Finally, shared resource problems are studied in terms of
Petri nets.

Case I: Common Places and Common Place-Place-
Path



Theorem 1.

The liveness level of the combined net N(Nj+Nj) is
Min{Level(N}), Level(N3)}, if Min{DB(T;, T2), DB(T>,
Ty)}=ee.

The synthesis cases that can satisfy the condition of
Theorem 1 are illustrated in Figure 5.

w @
(@)

Fig. 5 Combined nets fused by common Place-Place-Paths
and common places

Figure 5 (a) and (b) show that the combined nets are
fused by common Place-Place-Path. In Figure 5 (c), the
combined net is fused by common places. This can be used
for the shared resource problems in manufacturing systems.
For example, if two sub-systems are live and bounded and
the synchronic distance between sub-processes is infinite,
then the whole system can be live and bounded using the
above synthesizing methods.

But, as seen in Figure 5, the combine nets are fused by
common places or a common Place-Place-Path to satisfy the
condition Min{DB(T), T2), DB(Tg, T1) }=ee. Unfortunately,
the deviation bound is not a precise measure for checking all
methods of combining nets. We consider the case of
common transitions in the followings.

Case II: Common Transitions

As a simple example, if the combined net is fused by
common transitions, the above condition can no longer be
satisfied as seen in Figure 6.

The next topic is to handle this case in which the
combined net is fused by common transitions. Let us
consider the more detailed example shown in Figure 7. Two
circuits (LB-circuits) shown in (a) and (b) are live and
bounded. If these kinds of circuits are fused by the common

Fig. 6 A combined net fused by a common transition
transition tc, then the liveness of the combined net shown in
(¢) may be changed. The question arises as to how this
change(liveness) can be described by deviation bounds.

tc

Ps

t3
() (b)
P1 P2 P3
ty ty
te
13
©

Fig.7 A combined net fused along a common transition

The deviation bounds of the nets in Figure 7 are
calculated as follows. The subscript “pre” denotes before-
fusion and the subscript “post” denotes after-fusion. Here T;

" is the set of transitions for the sub-Petri net i.
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DB(T}, Ty)pre=oo
DB(T2, Ty )pre=°.°

This is intitively true, because the DB of the combined net
in this case cannot exceed some positive number k. Actually
DB(T1, T2)post and DB(T3, T1)pos depend on the initial
marking of each LB-circuit. From minor changes of the
initial marking such as my(p1)=0, mg(p2)=0, mo(p3)=1,
;'_nﬁ(p4)=1, mo(ps)=0, the deviation bounds change as
ollows.

DB(T}, T2)post=1
DB(T2, Ti)pos=0

DB(T1, T2)posi=0 DB(T2, T)pos=1

As mentioned before, in this case, even if the deviation
b(:ﬁn;d of two LB-circuits is not infinite, the combined net is
still live.

Let us assume that the t. shown in Figure 7 (¢) can be
enabled when it is to be fired, and calculate the deviation
bound between (Ti-t.} and {Tp-t.}.



DB({T1-tc}, {Ta-tc))=DB([ty, 12}, {t3})==
DB({T2-te}, {T1-tc))=DB({t3}, {t1, t2})=c0

These results say that the liveness of the combined net
fused by a common transition is preserved if the deviation
bound between two sets of transitions excluding the
common transition is infinite. The enabling condition
previously stated can be easily satisfied if the nets to be
fused are restricted to LB-circuits. This can be used for
synthesizing Petri nets, in which the combined net is fused
by a common transition if we can identify the enabling
condition. As a matter of fact, this is not in conflict with
Theorem 1.

The results can be extended to multiple common
transitions as shown in Figure 8 .

Fig. 8 A combined net fused by common transitions

The system consists of three sub-systenis described by
Zy, Zy, and Z3. Three sub-systems must be coordinated
with each other, and the coordination is described by an LB-
circuit fused by three common transitions of sub-systems.
We assume that the sub-systems are live and bounded.
Theorem 1 can not be applied to this case, because this is not
a common Place-Place-Path. Let us calculate the deviation
bound. We know that the three common transitions can be
enabled when those are to be fired.

DB({T)-te1}, {te2, teal)=ee DB({te2, te3}, {Tr-te1})=o=

From this, we know that the combined net of Z; and LB-
circuit is live. In the same way as above,

DB({Ts-tc2}, {tc1, tea})=ce  DB({te1, te3}, {T1-tc2})=oe
DB({T3-t3}, {te1, te2})=cc  DB({te1, tea}, {T3-te3})=c

we can conclude that the whole net is live and bounded.

If we keep the structure of the net, it can be generalized
to n common transitions. The physical meaning of this
system, especially for manufacturing systems, is that the
LB-circuit distributes the shared resources to sub-systems
while keeping some kind of priority scheme.

Case III: Shared Resources (Common Place and
Transition-Transition-Path)

Deadlock has been widely studied in the context of
operating systems. In automated manufacturing
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environments, the deadlock situation should be avoided to
process sub-activities smoothly. Generally, deadlocks occur
in handling shared resources in manufacturing systems. The
general shared resource problems in manufacturing systems
can be interpreted in Petri nets as shown in Figure 9.

LB, p,
Fig. 9 The general shared resource problem in Petri nets

The system consists of three LB-circuits that are fused
by the common place R. Three LB-circuits are LB (t1p;t2R),
LB3(t3p2t4R), and LB3(tsp3tgR). The place R represents
shared resources. For example, it may represent the number
of robots available. We consider only the case when place R
has an initial marking (tokens) less than the number of
combined LB-circuits. If the place R has three tokens, then
R has enough tokens to process three sub-processes
independently. Deadlocks cannot occur in that situation.

The path t;p;t; shown in Figure 9 represents a sub-
process requiring the shared resource in R. In the same way,
the paths tzpats and tspste represent other sub-processes.
The system itself is live and bounded, ie., there is no
deadlock and the system is stable based on the theory of the
common Place-Place-Path [11].

However, the possibility of deadlock could inreise if
two sub-processes, for example, the sub-processcs ity
and t3pat4, interact together in another sub-systein. Oae
purpose of this paper is to describe the interaction using the
deviation bound. Thus we can analyze the systerm’s liveness.

For simplicity, just consider two sub-proccesses
interacting with each other in another sub-system S: as
shown in Figure 10. Two sub-processes, the paths 1pat2
and t3pat4, have interaction in the sub-system S; thor is
described by the LB-circuit (typatopstapstapity). The pluce R
is a shared resource place. We assume that thc inisial
condition of the net is [2, 0, 0, 0, 11T as shown in Figuie (0
(a). From the structure of the net, we know the activity of
the sub-process tjpat precedes the activity of the gun-
process t3pats.

We observe that if the sub-process tjpaty can put the
same number of tokens as the place p; into place p3 without
activating the sub-process t3pats, and if the sub-process
13paty can produce the same number of tokens as ps to the
place p; without activating the sub-process tipatz, then the
system is live and bounded.

In the case of (b), the sub-process tjpstz can produce
only one token in the place p; without activating the sub-
process t3pat4, because of the place ps. The system is
bounded, not live. If the place ps has two tokens initially,
then it can produce two tokens into the place p3. Therefore,
the system is live. If the places py and ps have one token
each, then the net is still live. These conditions can be
described by the deviation bound as follows.



(a) (b)
Fig. 10 Two sub-processes interacting with each other

The system shown in Figure 10 is live and bounded if
mo(p1)SDB({ty, 2}, (13, 14}).
Two set of transitions, {1, t;}and (ts, t4}, are the sub-
processes interacting with each other. This result can be
directly applied to generalized Petri nets.

4, Conclusions

This paper shows the usefulness of synchronic variables
for analyzing and designing discrete event systems. The
interactions between sub-systems, which frequently appear
in manufacturing environments, are analyzed using deviation
bounds. In this paper, these interactions are described by
common places, transitions, paths, and place plus path. We
did not formalize all the results. The formal presentation will
appear in our next paper, and their application to colored
Petri nets is a topic for future research.
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