‘91 KACC 1991. 10. 22~24

SCHEDULER FOR PARALLEL PROCESSING
WITH FINELY GRAINED TASKS

° Takafumi Hosoif, Hitoshi Kondoht and Shinji Harat

tDepartment of Control Engineering, Tokyo Institute of Technology,
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152 Japan

ABSTRACT

A method of reducing overhead caused by the processor
synchronization process and common memory accesses in
finely grained tasks is described. We propose a sched-
uler which considers the preparation time during search-
ing to minimize the redundant accesses to shared memory.
Since the suggested hardware (synchronizer) determines
the access order of processors and bus arbitration simul-
taneously by including the synchronization process into
the bus arbitration process, the synchronization time van-
ishes. Therefore this synchronizer has no overhead caused
by the processor synchronization(1].

The proposed scheduler algorithm is processed in par-
allel. The processes share the upper bound derived by
each searching and the lower bound function is built con-
sidering the preparation time in order to eliminate as
many searches as possible. An application of the pro-
posed method to a multi-DSP system to calculate inverse
dynamics for robot arms, showed that the sampling time
can be twice shorter than that of the conventional one.

1. INTRODUCTION

Multiprocessor systems have been employed in a wide va-
riety of computer applications not only in the field of infor-
mation processing but also for the control of robots and
in real-time high-speed simulations of dynamic systems,
because they can provide excellent response and cost ef-
fectiveness. In order te take advantage of parallel process-
ing, it is desirable to attain a minimum execution time
with a minimum number of processors. To achieve this,
an efficient scheduling algorithm must be developed to al-
locate a set of tasks to several member processors and to
determine the order or sequence of execution of the tasks
allocated to each processor. This type of problem, usu-
ally referred to as the minimum execution time (schedule
length) multiprocessor scheduling problem, has long been
studied extensively by a number of pioneering researchers.

1817

This problem, however, has been solved only for the
cases with large grained tasks due to the following two
reasons: Al) the larger overhead caused by the pro-
cessor synchronization and the shared memory accesses,
when the tasks are finely grained than when the tasks
are large ones. and A2) Scheduler algorithms are gen-
erally NP complete[2], i.e., it is impossible to construct a
pseudopolynomial-time optimization algorithm. These re-
strictions impose that this problem be usually solved with
large grained tasks and a small number of them.

In packing a box with goods we can pack more if the
goods are of small size than if they are large ones. Simi-
larly in parallel processing, it is more efficient to handle a
job by decomposing it into finely grained tasks than trying
to manipulate large ones(3].

In this paper, we propose a scheduler which minimizes
the redundant accesses to shared memory with finely
grained tasks (a cause of overhead that can be determined
before scheduling). Moreover the scheduler itself is im-
plemented using parallel processing techniques. And the
processes share the common upper bound and the lower
bound function which includes the preparation time for
shared memory accesses.

We confirmed the effectiveness of the proposed scheme
by applying it to the computation of Newton-Euler equa-
tions for dynamic arm control, using a multi DSP system
with four TMS320C25 processors. A multi DSP system
hardware configuration (synchronizer) has been designed
to eliminate the synchronization time (a cause of over-
head that cannot be determined before scheduling){1]. A
key factor in the hardware implementation of the control-
flow parallelism is high-speed circuitry in order to establish
synchronization between multiple processors.

The prototype was implemented using four TMS320C-
25’s. In this system, the access time of shared memories
equals to the access time of local memories.

SCHEDULER FOR MINIMUM
MEMORY ACCESS

2.

2.1 CONSIDERATION OF PREPARATION COST

Using the system described above, synchronization time
vanishes and the access time for shared memories equals
to the access time for local memories. In finely grained
task scheduling, however, there must be an additional im-
provement: Another component of inter-processor com-
munication, which is the data transfer time or preparation
time, can be also ignored in multi-processor systems with
tightly-coupled shared memories, since data can remain
on local memory or registers as shown by the following

example program section:

c:
d:

=a-b;

{task i}

=bxc; {task j}

1) In cases where data(Var_C) to be referenced in task j
and data to be assigned in the preceding task i on the
same processor were the same. Looking at the CPU2 in-
structions, the data load of task j can be omitted if both
tasks are assigned to the same processor(Figure 2.1), and
2) Under condition 1) and if the following task j is the
only one to refer to data to be assigned in of task i, both
the data store of task i and the data load in task j can be
omitted(Figure 2.2).

CPU 1 CPU 2
Load Acc Var A
task i Sub Acc Var B
Store Acc Var C
task j Load Acc Var C
Mul Acc Var B

Store Acc VarD
Figure 2.1 The data load of task j can be omitted.

Load Acc Var A
task i Sub Acc Var B
task j Mul Acc Var B
Store Acc VarD

Figure 2.2 Both the data store of task i and data load of
task j, can be omitted.

where Sub and Mul are conimands of subtraction and mul-
tiplication, respectively. Acc is an accumulator.

In this multi-processor scheduling, we consider the
preparation time between two tasks as a function of their
position orders. Since the values of this function can be
determinate before scheduling starts, the values are stored
in a cost matrix. Hence, the proposed scheduling scheme
will reduce the number of shared memory access to im-
pfove overhead and to avoid bus bottle-necks.

1818

2.2 PROBLEM WITH COMPUTATION AMOUNT

Scheduler algorithms are generally NP complete as men-
tioned in Section 1. In addition, it is more difficult to ob-
tain the optimal scheduling if we consider the preparation
time, since the calculation time will inevitably increase.

Here, we extend the scheduling in [4] and solve the prob-
lem. Let n, m, n,e0qy and m,, be the number of all tasks,
all processors, ready tasks and available processors, re-
spectively at a certain stage of branching. Then the num-
ber of idle tasks n;4. to be considered for allocation is
given by

Tidle = Mgy — 1 for mg, =m

Tidle = Mgy for 1 <mg, <m

Hence, in the conventional case, the number of nodes
generated from each branching node is given by

(1)
where C means the number of combinations(See Figure
2.3).

Nbranch = (n",d,+n,d,¢)cmtxp

1 3

2 4

1 4

2 3
1[3,4,4]

Figure 2.3 The number of nodes generated from each
branching node in the conventional case.

In the proposed case, however, since the preparation time
is determined by two tasks stretched in a row on the
same processor, the number of nodes generated from each
branching node becomes

(2)
where P means the number of permutations(See Figure
2.4).

’ —
Moranch = (ready+midic)Pmav

1 3
2 4
*—m— difference
1 4
2 3
1(3,4,4]

Figure 2.4 The number of nodes generated from each

branching node in the proposed case.
Hence, comparing these equations, we have

(ﬂr.a.:,,+".'a:.)Pm...r/ (nnaa,+n.‘u.)cma.- = Myy! (3)

This means that complexity of the scheduling algorithm:

increases seriously by considering the preparation time.

2.3 PARALLEL SCHEDULER AND LOWER BOUND
FUNCTION

Here, in order to unbias searching in the search tree, the
scheduler itself is processed in parallel by several proces-
sors based on heuristic lists containing the order of tasks
to be assigned to the processors. These heuristic lists are
built according to the following heuristic rules to obtain a
better initial solution:

1) Higher precedence to the task with the latest starting

time and the smallest floating time.

2) Higher precedence to the task with the latest starting
time and the largest total processing time among the
following tasks.

3) Apply rule 1) after slight shuffling of the list.
4) Apply rule 2) after slight shuffling of the list.

Each scheduler part is processed independently. Since the
branch-and-bound method (B&B) has a property that the
frequency of finding a solution decreases as the search pro-
gresses, all heuristic lists are shuffled after searching for a
specified period of time. In addition, since a B&B can be
accelerated by eliminating redundant searching nodes, we

1819

use a special scheme to share the upper bound and the
lower bound function which estimates the lowest solution
from currently active nodes.

The proposed lower bound function is:

tain(ma) = [(3. ti +teou)/m] + 1o

$€1(%q)
where,
bt = MAX(trous toot) (5)
g —(M—1Mgy)}
trow = ; (;glﬁﬂ(k)ieNﬁl.}gNn;Ci'j)
m-—May
* k=1 -'[en&?.-(k)c"'" ©
flae—(M—"Mae)
o =L (min) min, C)
mM—"May
+ Lz::l .'xenhll?.,(k)Ci'" Y]

Naw(= I(7,)), nav: a set of unassigned tasks
and its number
Nog,nng: aset of unfinished tasks

and its number

In a set X, let min(k)X be the k-th smallest element, i.e.,
min{1)X = min X. C;; is the element of a cost matrix
which is determined by the former task i(row side} and
the latter task j(column side). This lower bound function
is defined by the following rules:

If we consider a certain node of the search tree, we can
know the smallest number of preparation processes con-
sidering the remaining tasks. At first, paying attention to
the preparation times which follow the tasks, we get the
smallest preparation times from each row of the cost ma-
trix. Secondly, we pick up the preparation times that can
certainly occur in increasing order length and the total of
these is the smallest preparation time possible. Following
we apply the same procedure for the columns excepting
the End column. Then, we define t.,. as the bigger of
trow and teo.

Consider the simple example of Figure 2.5. Task 1 has
been already assigned and the number of active proces-
sor is one (m — m,, = 1). The lower bound function is
calculated as follows:

1. Pick up the smallest element of each row. In this case,
from the cost matrix(Figure 2.6),

1223

2. Since there are four unfinished tasks(task 1,2,3,4) and
the number of active processor is one, we get the three
smallest numbers among the above in increasing or-

der.

122

3. Pick up the smallest element from the End column,
because the active processor will certainly have an
End preparation time. Then ¢,,, is the total:

4. Similarly the evaluation for column side yields to
tea=1+3+3+2=9

5. Since the preparation time lower value is the maxi-
mum of the two, we obtain ¢.,,, = 9. Then we calcu-
late the lower bound function considering preparation

time.
considering node
<z
CPU 1 task a || task 2 ll task4HEnd
CPU 2 task 1 I | task 3 | | End
Figure 2.5 The example node.
| || task 2 | task 3 | task 4 | End
task 1 3 4 1 4
task 2 — 5 4 . 2
task 3 3 — 2 5
task 4 6 3 — 3

Figure 2.6 The cost matrix for the example.

Since the scheduler finds the best combination of tasks,
it automatically minimizes the redundant access to shared

memory.

3. THE SCHEDULER APPLICATION

3.1 RESULT OF SIMULATION

We applied the described scheduler to about a hundred
task graphs randomly made. Task graphs to be processed
in parallel are artificially generated randomly and divided
into several groups to demonstrate the usefulness of par-
allel processing of finely grained tasks. In this case, we
let all preparation times to be 0, since we want to know
the effect of scheduling in only finely grained tasks. The
scheduled result is shown in Figure 3.1, where we note
that the increasing of the number of processors results in
a better solution, since the increased number of divisions
shortens the critical path. This is the reason why we sug-
gest the scheduling with finely grained tasks in spite of
increasing computation amount.

1820

Execution Time

p
1 T T T T ¥ T

09 F original case(20 tasks) ©— |
. nely case(40 tasks) =+—
08 | 4

0.7 B
0.6 - b
0.5 -
04 -
0.3t 5
0.2 - B

0‘1 1 1 Il 1 L
1 3 4 5 6 7 8
The number of processors

Execution Time

1 T T T T T T

0.9} original case(30 tasks) &— |
. nely case(60 tasks) <—
0.8 4

0.7 : .
0.6 - .
0.5 - .
0.4 1
03}
0.2t 1
0.1 : ‘ ' : : '
1

2 3 4 5 6 7 8
The number of processors

Figure 3.1 The effect of scheduling in finely grained task.
(The size of each task in the finely grained case is half of
that in the original one.)

The size effect of the preparation time is shown in Figure
3.2. The improvement ratio IM[%)] is defined as

I_J_IY_—})C’XIOO

IM%) = —%5 (8)

where PC is the best solution when considering the prepa-
ration time, and PN is the best solution when ignoring
it, i.e. letting all the preparation times to be the biggest
one that is expected. The ratio of preparation time is the
percentage of the sum of all preparation times comparing
with the sum of all execution times.

Improvement Ratio[%)]

25 T T T T T T T
2 processors 3
4 processors L
20 - 6 processors

15

10

0 1 Il s L 1 L "

0 5 10 15 20 25 30 35 40
The ratio of Preparation Time[%]

Improvement Ratio[%)
25

I S NS R 1 A

15 20

10 25 30 35
The ratio of Preparation Time|[%)]

40

Figure 3.2 The size effect of the preparation time.

We conclude from the above experiment that the im-
provement ratio is proportional to the preparation time
and is not influenced by the number of processors and
tasks. Then if the preparation time gets larger, we can

not ignore it.

3.2 APPLICATION TO A ROBOT MANIPULATOR

In order to show the effect of finely grained tasks and the
consideration of preparation time, we applied the proposed
method to the inverse-dynamics calculations (Newton-
Euler method) of a three-axes robot arm(5)[7] since the
control of more and more complex robot systems in reai-
time high-speed applications is recently being required.

In our experiments, the jobs were divided in two ways:
L) large grained tasks (Table 3.1;16 tasks) and F) finely
grained tasks (Table 3.2;184 tasks).

Table 3.1 Tasks for large grained scheduling.

Fcask No. | operation |'execution time
0 dummy task 0
1 2M 24
2 6M,2A 88
3 2M 24
4 TM,5A 124
5 4M,3A 72
6 8M,7A 152
7 16M,11A 280
8 TM,6A 132
9 M 36
10 13M,8A 220
11 T™,5A 124
12 21M,16A 380
13 5M,3A 84
14 9M,6A 156
15 dummy task 0

1821

Table 3.2 Tasks for finely grained scheduling.
Ltask No. | operation | execution time
0 dummy task 0
1,..,182 1M or 1A 12 0r 8
183 dummy task 0
110M,72A

where A means addition and M multiplication. The
scheduling case F) is carried out based on the following

three methods;

F1) scheduling considering the preparation time (pro-
posed method).

F2) scheduling ignoring the preparation time and insert-
ing the required preparation time after scheduling.

F3) scheduling including the preparation time and elim-

inating the redundancy preparation time after

scheduling.
The results for our four processors are shown in Table 3.3.

Table 3.3 The Results for four processors.

L

‘;heduling[clock] i execution[clocﬁ

[Large grain(16 tasks) 1844 1844 |
Fine grain(184 tasks)]
F1) 844 844
F2) 476 992
F3) 1040 1004

Although the scheduling result in case F2) (476 clocks)
is shorter than the one of case F1) (844), their execution
time results (992 and 844 clocks respectively) show that ,
in fact, method F1) has a better performance. Moreover,
the execution result in case F1) is more than twice faster
than the one of case L). This means that the scheduling
with finely grained tasks is clearly better than with large
grained ones, if we can search almost all part of the search
tree. In addition, we have changed the number of proces-
sors. Figure 3.3 shows the execution time vs. number of
processors. From it, we conclude:

C1) When the preparation time is taken into considera-
tion, the execution time in F1) is 9.8-28.1% shorter
than that of F2) or F3).

C2) For a small number of processors F1) is far better
than F2) and F3).

C3) For cases with more than 4 processors the difference
between F1) and F2) and F3) is small but the dif-
ference between F1) and L) tends to become signifi-
cantly larger since L) reaches the critical path with 2
processors.

C4) In general, the finely grained tasks option is better
than the large grained one since the later reaches the
critical path earlier. ’

C5) Case F1) is always the better method for any number
of processors.

Execution Time [clock]

4500 T T L — T
'Fl' ©—
- BE
3500 DX]
3000 b
2500 . b
2000 X X x 3
1500 b
1000 b
500 | I "
1 2 3 4 5 6

The number of processors

Figure 3.3 The execution time vs. number of processors.

4. CONCLUSION

We proposed a scheduler considering the preparation time
and minimizing redundant access to shared memery. The
scheduler was implemented to be processed in parallel and
shares the common upper bound of each process and the
lower bound function considering the preparation time for
shared memory access. Applying the proposed system to
a multi-DSP configuration to perform inverse-dynamics
calculations in a robot arm application showed that the
sampling time can be shortened twice as that of the con-
ventional one. Moreover we showed the necessity of con-
sidering the preparation time when the scheduling is made
with finely grained tasks and confirmed that the proposed
method made the scheduling more accurately.

The results also showed that, contrary to the common
belief, finely grained tasks applications can not be made
to cause communication overhead providing a performance
even better than that of large tasks applications.

REFERENCES

[1] H.Kondoh, F.Kobayashi and N.Takehira, ” A Bus Ar-
biter with Inter-Processor Synchronization for Paral-
lel Processing of Operations.”, T.IEE Japan, Vol.109-
C, pp57-61, No.2, Feb. 1989.

{2] J.K.Lenstra and A.H.G.R.Kan, ”Complexity of
Scheduling Under Precedence Constrains”, Oper.
Res., vol.26, pp22-35, Jan. 1978.

1822

[3] B.Kruatrachue and T Lewis,” Grain Size Determina-
tion for Parallel Processing”, IEEE Software, No.1,
Pp23-32, Jan. 1988.

[4] H.Kasahara and S.Narita, "A Practical Optimal /
Approximate Algorithm for Multi-Processor Schdul-
ing Problem”, Trans. IEICE, vol.J67-D, No.7, July
1984.

[5] H.Kasahara and S.Narita, "Parallel Processing of
Robot-Arm Control Computation on a Multimicro-
processor System”, IEEE Journal of Robotics and
Automation, vol.LRA-1, No.2, June 1985.

6

R.G.Babb,”Parallel Processing with Large-Grain
Data Flow Techniques”, Computer, pp.55-61, July
1984.

[7) H.Kondoh, et al., ”Parallel Processing of Finely
Grained Tasks: Arbitrating Synchronizer and Par-
allel Scheduler”, IECON, 1991 (To be presented)

