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Abstract - A numerically efficient modification of a
variable step size LMS (Least Mean Squares) algorithm
is proposed. This proposed algorithm is very simple in
calculation and has a variable step size adjusted by the
filter output error. Its additional computational bur-
den with respect to the conventional LMS algorithm is
only two multiplications, two substraction, an addition
and some bit operations. In a simulation example, it
is shown that the proposed algorithm has not only the
faster convergence rate but also less misadjustments in
the environment of highly nonstationaﬁ and correlated

data .

I

Introduction

The LMS(least mean square) Widrow-Hoff algo-
rithm [1] is very simple in the number of calculations
required for its update and robust in a number of prac-
tical applications. Therefore it has been useful in adap-
tation of the weight vector of adaptive FIR(finite im-
pulse response) filters and in training of the multilayer
perceptron, which is generally of high order. In these
applications the LMS algorithm has worked well, but its
convergence rate is fairly slow. The convergence rate
of the LMS algorithm is dependent on the step size,
i.e. the large step size results in the fast convergence.

However the large step size also causes the algorithm to
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get large misadjustments of the filter weights, since the
convergence rate and misadjustments have a trade-off
relationship each other.

At this stage, the problem is that we want the fast
convergence rate as well as little error residuals in the
adaptive algorithm in spite of the trade-off relationship.
Some modifications of the LMS Widrow-Hoff algorithm
were proposed as solutions of the problem (2], [3}, [4],
[5]. A common method used in these algorithms is that
the step size can be varied on going. In this paper an-
other solution is proposed, which is very simple in cal-
culation to update tilter weights and has a variable step
size adjusted by the filter output error. A similar idea
on the step size adjustment was used in the Karni-Zeng
algorithm [4]. But the calauiation of the proposed algo-
rithm is more simple and its step size depends not on

the norm of the gradient but on the filter output error.

II The Proposed Algorithm

The LMS Widrow-Hoff algorithm is

W(t+1)=W(t)-uV(),t=012,..., (1)

where t is the time index in the discrete-time domain,
W € RM is the filter weight vector and u is a constant

step size. And the gradient V € RM is defined as
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(2)

In equation (2), X € RM is the filter input vector, and

¢ is the filter output error. The error is defined

e(t) = d(t) - y(1) (3)

() =W)X (1), (4)

where d is the desired output, y is the filter output and
the superscript (-)7 denotes the transpose of the vec-
tor. In equation (1) the step size has a value within the
interval

(5)

Bmin < kb < Bmaz-

In this relation (5), if the filter inputs are identically
gaussian distributed with power ¢?, then the fn.. is

given as [1]
2
Mo?’

Hmaz =

(6)

If the step size is kept large before the filter weight
vector converges near to the optimal point and reduced
appropriately as the vector converges, then the algo-
rithm has the faster convergence property during the
transient stage as well as less misadjustments of weights
after convergence near to the optimal boint. An imple-

mentation of this philosophy can be given as

(M

/“(t) = (l"maz - l‘min)(l - 2L(t)) + Homin,

L{t) = ~NINT(las(t)), ®)

where NINT(-) is defined as the nearest integer of (-),
|| is the absolute value and « is a weighting parameter
of the filter output error. In equation (7), the L** power
of 2 can be calculated by bit shift operations in digital
TOCESSOTS.

This simplicity in calculation makes the algorithm
more practical from the implementation point of view.

In that proposed algorithm, the calculation to update
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weight is very simple compared with the Karni-Zeng
algorithm. Its additional computational burden with
respect to the LMS Widrow-Hoff algorithm is only two
multiplications, two substraction, an addition and some
bit operations, but the Karni-Zeng algorithm addition-
ally needs an exponential calculation and a calculation
of the norm of the gradient, ||V(t)||. Another charac-
teristic is that the step size is only dependent on the
absolute value of the filter output error, which is dif-

ferent from the norm of the gradient in the Karni-Zeng

algorithm.

I[IT Simulations

To illustrate the convergence properties of the weight
vector when employing the proposed algorithm, an adap-
tive linear combiner depicted on Fig. 1 is considered,
where r(k) is a white, zero-mean gaussian signal with
variance o? and d(k) is a desired output signal defined
as d(k) = 2cos(2nk/N).

Fig. 2 - Fig. 4 show simulation results of the pro-
posed, the Karni-Zeng and the LMS Widrow-Hoff al-
gorithm, which are plots of the ensemble average value
at that time index of a twenty five executions. In these
figures, convergence results of three algorithms are plot-
ted on a figure easy to compare with. Environments for
these simulations are as follows: the random noise vari-
ance o’ is 0.01, the weighting parameter « is 1 in the
proposed algorithm and also in the Karni-Zeng algo-
rithm. The maximum step size gmq, is 0.7 which is less
than the one from equation (6), where the comments
and results in [6], |7] were considered in order to choose
the maximum step size gm,.. On the other hand the

minimum step size p,,, is set to be 0.1.



And in the simulations we change the filter weights
alternatively in order to test performance of the algo-
rithms in the different phases of time varying environ-
ments. The N, samples per a signal cycle, is changed
from 5 to 13 or vice versa periodically during these sim-
ulations. The change of N causes the MSE(mean square
error) surface to be altered considerably. The eigenvalue
spread, defined as Ay / Amin (Where Angp[Amin] is the
maximum|minimum]| eigenvalue of a matrix), of the in-
put correlation matrix is about 2 when N is 5, and it is
about 14 when N is 13. We call these situations phase
1 and phase 2 respectively as shown in the figures. This
says that the simulated environments are highly non-
stationary.

Fig. 2 shows variations of step sizes in the different
phases where reduction of step sizes is apparent. The
proposed and the Karni-Zeng algorithm worked better
than the LMS Widrow-Hoff algorithm as shown in Fig.
3 and Fig. 4 because these algorithms can be adapted to
the given nonstationary conditions via varying the step
sizes by the filter output error. The proposed algorithm
works as good as the Karni-Zeng algorithm in the phase
1, but in the phase 2 where the eigenvalue spread is
large, the proposed algorithm performs better than the
Karni- Zeng algorithm.

In the environment where the data are highly cor-
related, the eigenvalue spread is large. In this case the
magnitude of the slope of the MSE surface along the
eigenvector of the smallest eigenvalue is usually small
in the transient stage while the error is big as shown in
the literature [1]. Therefore the norm of the gradient is
smaller than the absolute value of the error. The step
size in the LMS Widrow-Hoff algorithm is set to be a
fixed value 0.1 as the minimum step size in the proposed
algorithm. This value of the step size is roughly around
the adjusted one during the first stage of the proposed

one.
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v Conclusion

The proposed algorithm is basically a modification
of the Karni-Zeng algorithm. However its calculation
to vary the step size is much simple and the adjustment
method of it is more reasonable because, in the case
of highly correlated data, the norm of gradient is less
than the absolute value of the error. In order to adjust
the step size, the proposed one does not need the expo-
nential calculation and gradient norm calculation which
are needed in the Karni-Zeng algorithm. Moreover the
step size in the proposed algorithm depends on only the
absolute error rounded to an integer so that the calcu-
lation becomes just bit shift operations. This simplicity
makes the proposed algorithm easy to be implemented

in discrete-time domain by digital processors.
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Fig. 2 Variations of Step Sizes
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Fig. 3 Convergence Properties of Filter Weights
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Fig. 4 Convergence Properties of Mean Square Errors



