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ABSTRACT

This paper proposes a robust model following
control systems with nonlinear time varying plant,
which realies good properties such as asymptotic
stability, disturbance rejection and model-following
with reduced sensitivity for plant parameter
The schemes do not incorporate any
but the

adaptation is realized through signal synthesis in a

variation.
parameter identification algorithms,

fixed parameter structure

1. INTRODUCTION

The variable structure model-following control
(VSMFC) system is an adaptive model-following
(AMF C) system designed as a variable
structure system (VS S) by applying the theory of
VS S so that sliding mode exists [1][2].

The study of the VSMF C for the single input
systems is enlivened, but for the multi-input systems

control

is not only difficult to choose the variable
structure control gain but also afraid of stability
and convergence [1]. And it may be impractical to
apply the discontinuous chattering input directly
the plant [3].

In this paper,

to

a new method to the robust model
(RMF C) systems [41[5]
The control gain does not require the
thus the
The advantage of designing

following control is
considered.
solution of a set of differential equations,
structure is simple.

RMF C systems is that the transient response of

the model plant error can be prescribed by the design.

The control system exhibits insensitivity to
parameter variations and noise disturbances.
The theory is applied to the problem of model-

following control for a class of nonlinear time-

1934

varying plants [6]-[8). The design procedure and the
performance of the resulting control system are
illustrated by a design of the pendulum position

control systems[9][10].

2. PROBLEM FORMULATION
The state equations of a nonlinear time varying
multivariable plant arz as follow. [8]

X2 A, (X, ) x4 Bl x5, D u,talx,,

(1)

vhere x,€R" is the plant state,
input, a €R"
vector including disturbances. The plant matrices A,
but the
nominal value of the elements of these matrices are

u, €R"™ is the
control is a nonlinear time-varying
and B, may be nonlinear time-varying
assumed to be known to the designer. The following
assumptions specify the class of nonlinear plants
considered in this paper. @ B,(x.,.8)=B.F(x,.0,
a full rank matrix 8.
matrix F(x,, is positive definite
-A.=B.C(x,,1), A
bounds of the norms of the matrix

a norm bounded
@ A.(x,.0
and the upper
C(X,,1t) are
available @ a(x,,.0)=B.c(x,,t), the upper bounds
of the norms of the vector c{x,.t) is available @
the pair (4., B.) is controllable
The model specifying state behavior expected

is available,

the matrix

from
the controlled plant is described by the linear, time~
invariant,differential equation.

Xo= AoXatBou. (2)
wvhere x,€R" is the model state, u.€R' is a
piecewise continuous bounded reference input. A, is
asymptotically stable and the pairs (A., B.) is

controllable. A matrix 4. satisfying the assumptions
can be obtained as A.,=4.+B,A, with A, obtained,
for example, by demanding A. to have specific



eigenvalues.

In model-following systems, the plant is
controlled in such way that the dynamic behavior of
plant approximates that of a specified model. The
controller should force the error between the model
and plant to zero as time tends to infinity

The state error vectors are represented by Eq. (3)
and a new transformed vector is defined by Eq. (4).
The dimension of the new vector is equal to that of
the control input vector

e = Xu-X, (3)
s = Ge 4

vhere e€R", s€R™ and G(mX n) is the
transformed matrix.

= Xa - X, (5)
= Ge
= GlAnet{(AdAa-A4,) X4 Batta- B, u,-al (6)

e
s

For the perfect model following case, Eq. (6) is
zero and the equivalent control is obtained by
solving the equation for u,.

Upeo = (G B,) '"GlAse+t( 4. A4,) x,+ Bauaal(l)
Substituting Eq. (7) into Eq. (5), Eq. (8) is obtained.

E=[I-B,(GB,) 'GllAne+(Aus-4,) X,+Boua—al

(8)

In Eq. (8), Xx,, u. and & are considered as

disturbances for the error dynamics [1]. For these

total disturbance rejection, Eq. (9) holds for any
X, Up and a.

[I-B,(GB) '"Gl(A»-A,)x, = 0
[/-B,(GB,)'GlBauas=10 , (9)
[/-B,(GB,)""'Gla =0

So that the linear systems, Eq. (9), have a solution,
the following conditions are obtained [11].

rank[ B,] = rank[ B,: A.~4,]
= rank[ B,; Ba) (10)
= m

Eq. (10) is the perfect model-following conditions [1]
which is a genera! necessary conditions to the
model-following control systems.

3. ROBUST MODEL-FOLLOWING
CONTROL SYSTEMS

in many case, the variation in plant matrices can

be expressed as the sum of a known nominal matrix and

a variation matrix.

.’é, = [Ap°+A ,4,(,\’,,.!)]X,+[BP°+A BP("’P!!)] U,

1935

+a(x,,
= [Apoxp+BP° UP]+[A AP(XP't) Xt
AB(x,, )usjta(x,,t) (11)

vhere, A,° and B,° are the nominal matrices of
A,(x,, 1) and B,(x,.t), respectively. Eq. (5) and
(6) became eq. (12) and (13).

€ = Auet(Au-A,") x4 Bata-B,°u,
S(AA (X, ) x4A B x,, Du,talx,, ]

= é°-A¢€ (12)
$ = GAve+G(Aw-A4,°) X, 4GB UGB, u,
~-GA e 13)

3.1 Design of a robust mocdel following control law

Because s is a scalar in the single input system,
G(1x n) is a vector, therefore, we can choose the
element of G so that the transient state error
response is desirable. However, in the multivariable
system, s{(mx1) and u,(mx1) are vectors, thus
G(mXx n) is a matrix. !n order to correspond one
by one between s and u, element, the matrix GB,°

in Eq. (13) should be a unit matrix /7 (mx m).

GB,* = I (14)
$=2GA.e+G(AA) X4 GBatlo-ti,~-GA & (15)

The linear gain matrices are defined as Eq. (16) and
Eq. (15) became Eq. (17).

G.= GA.
G, = G(AL~A,%) (16)
G.= GB.
S= G+t G X4 Galla-t,~GA & an

Rearranging about the control law,Eq. (18) is obtained.

U, = Goe+G, X+ GullamS~-GA €
= G,e+tG, X, Gollam5°

(18)

In the Eq. (4), the error vector goes to zero as
time tends to infinity, that is, the §° vector goes
In order to satisfy that, the sign of s.°
different from the sign of s;°

to zero.

s:° S:i’< 0 (19)

Inequality (18) is the condition to occur the sliding
motion in VS S. In the VS S theory [12][13], the
system representative point could be brought from any
initial position to the switching hyperplanes. Once
the operating point reaches the switching hyperplanes,
the control will switch between the gains to force
the representative point to move along the switching
hyperplanes. Every time the representative point
leaves the switching hyperplanes the controller
changes the feedback structure to force the point to



Teturn to the switching hyperplanes. This special
motion is called the sliding motion. Sliding motion
occurs if, at a point on a switching surface, the
direction of motion along the error state
trajectories on either side of the surface are not
away from the switching surface. The state then
slides and remains for some finite time on the
surface s.(e)=0. Then the error between model and
plant goes to zero and the model-following is
obtained.

Because Eq. (18) is a set of differential equations
such as AMF C, we take the term of s° instead of
s°.  Then, inequality Eq. (19) became an equality
Eq. (20).

s'w'=-as,-" (20)

where @ is a positive constant.
control law obtained as Eq. (21).

Therefore, the

U, = GeetG,ox,4Gausta s° (21)

The variation in A,(x,,t) and B,(x,.¢) can be
expressed as the sum of a known nominal matrix and a
variation matrix. Since the bounds on the variations
are limited, s is a very close approximation to s°.
Furthermore, carrying on the model following, s° and
S are approximate to zero and the final term in Eq.
(21) is relatively small in comparison with other
terms. Thus, taking s instead of s°, we can compose

°

the control function as Eq. (22) and the block diagram
as Fig. 1.

U, = Gee+G,Xx,+Gultata s (22)

In Fig.1, the input of the model, #a., is a command
value or a feedback input by the optimal theory or
the pole placement theory.

Un LINEAR MODEL
ke =Aux A Bou.| ¥ e

NONLINEAR PLANT
X, = f(x,, U, 1)

Fig.1 Robust model-following control systems

3.2 Hyperplane design by eigenvalue assignment

The perfect model following condition Eq. (9) means
that the matrices A.. A4, and B, can be transformed
to Eq. (23).

Where, B.(a#x# is the nonsingular square matrix.
i=p-#t/,n and J=/.n. And, from Eq. (14), we consider
the following equation.

G=(Q8,°)7'Q (24)

vhere a matrix Q(mx n) is defined the hyperplane
matrix. The selection of the matrix @ is very
important. ’

For the perfect model following case, substituting
Eq. (24) into Eq. (8), Eq.{(25) is obtained and Eq. (4)
becase Eq. {26).

"

é =[(1-8,{QB,)7'QlA.e (25)
s = Ge =10 (26)

In this case, # error state variables in Eq. (25) can
be expressed in terms of the remaining »-# error
state variables using the # algebraic Eq. (26). Since
Eq. (27) always holds, Eq.(28) is formed [14].

[BAQB,)'Q1 = BAQB,)'Q@B,(QB,)'Q
= B,(@B) 'Y 2m
rank[ B, (Q B,) ' Q] = rank[ B,] = x (28)

Therefore, the most rank of [ /-B,(@B8,) ' Q] in
Eq. (25) is #-# and any A.(aXn) matrix pre-
nultiplied by [ 7/-B,(@B,) " @) will have at most
rank, #-2  The remaining unforced system Eq. (25) must
be asymptotically stable, which implies that all 7-2
eigenvalues of the matrix [ /-B,(@Q58,) ' Q] A. have
negative real parts. The eigenvalues can be placed
arbitrarily in the complex plane by suitable choice
of matrix Q(ax n). The design objective is to choose
Q so that the error tends to zero with suitable
transient motion. The polynomial from the desired

eigenvalues is reduced to
P(L) = CrtCalte » c+Crad """ (29)

We set up the matrix Q(#x n as Eq. (30) so that the
eigenvalues of Eq. (29) equal to those of Eq. (25).

I.J (30)
0 !

3.3 Robustness of the RMF C systems

In AMF C, the design of controller can be failed
if the inverse matrix does not exist. But, in this
algorithm, the inverse matrix in Eq. (24) always exist
because the multiplication @ (#x a) matrix by
B,°(nax #) matrix became the nonsingular square



natrix B.(#x #) in Eq. (23).

From Eq. (23), Eq. (30) and Eq. (31), the error dynamics
Eq. (25) became as below

[/-B:,{Q8,})7'Q1A.

—
s
[
¥
s
1
»

! (32)
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Eq. (32) means that @ the rank of the error dynamics
is (=8, @ (r0) eigenvalues of the error dynamics
equals to the desired eigenvalues of Eq. (29), @ the
eigenvalues can be placed arbitrarily in the complex
plane by suitable choice of @, '© the system is not
inftuenced by the parameter variations in A, and
B,.

4. DESIGN EXAMPLE

The design procedure and the performance of the
resulting control system are illustrated by a simple
example, a position control of the the pendulum shown
in Fig. 2 [9](10]

M,

M.
/"’

The equation of motion is

T3 (Ma/3+ M) O +6 8+5 1 (Ms/24 M)sin8=u, (33)

wvhere u, is the control torque, /(=0.3[mn]) is the
pendulum length, M, (=1.2[kgl) is the distributed
mass of the link, M, ( = 0-0.5[kg]) is a disturbance
in the form of a time varying lumped mass, 6 is the
angle between pendulum and vertical axis, ¢ (=0 -
0.03[N.ms/rad])is an uncertain parameter representing

the viscous friction coefficient and ¢ is the
gravitational constant.
Defining the state vector as x,"=(8, 8), we have

. [ 0 1 } [ 0 }
X, = 0 Xt U,
__-¢ R W
0.036+0.09 47, 0.036+0.08 ¥/,
0
; [ , J 0
- {19, 6432. T Mo)sinkey
0.4+ M.

The linear model to be tracked is as fellows:

Xu = [ 0 ! }.v,+ [0} Ua (35)
-2 -2 26

vhere, eigenvalues of model : A, = -1+j5

Digital simulations have been made taking ¢=0.02,
reference input u, as a square wave with a frequency
of 0.2[Hz] and an amplitude of 1[radl,and disturbance
M.{t) as a square wave with a frequency of 0. 2[Hz]
and with values ranging from 0 to 0.5[kg].

The simulation conditions are as fellows:
the initial conditions have been assumed zero, except

I,1=0.5[rad].
perfect model following condition :

rank{ B,]=rank[ B,; A.- A,]=rank[ B,; 5.)=1

computer time interval dt = 0.02 [sec]
positive constant : a = 0.1t/dt
degree of polynomial : - o= 2-1 = 1
desired eigenvalue A = -10

desired polynomial p(L) = X+10

hyperpiane matrix : Q =[10 1]

control gain matrices : G = [ 0.585 0.0585 ]
G, = [ -1.521 0.468 ]
G, = [ -1.521 -0.97 ]
G.=1[ 1.521]

The simulation results are illustrated in Fig. 3-5.
They indicate that the continuous control law allows
a remarkable smoothness of the control signal to [10],
together with a considerable reduction of its level
to [9). Therefore, the proposed control scheme may
be very useful for industrial applications.
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Fig. 3 Control input of the pendulum position control
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Fig.4 Angle response of the pendulum position control
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Fig. 5 Angular velocity response of the pendulum

position control

5. CONCLUSION

In order to eliminate the unpractical chattering
of the control signal typical of discontinuous
control laws, we propose a nev design concept for a
robust model following control systems for a class of
nonlinear plants in which the control law is a
continuous function of all its arguments. Such a
scheme guarantees that state error remains bounded
and tends exponentially to an arbitrarily small
neighborhood of the zero state. This system realizes
good properties such as asymptotic stability,
disturbance rejection and model following with
reduced sensitivity for plant parameter variation.
This algorithm can be easily applied to the single-
input system or the multi-input system, the linear
And the control

structure is simpler than other model following

system or the nonlinear system.

The transient response of the
model plant error can be prescribed arbitrarily by

control structure.
the design. An example is used to demonstrate the
design procedures and the excellence of the
performance of the RMF C systems.
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