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Abstract
D this paper, we cxplove the possibitity of URAN{ Univer-
sally Beconstruetable Aviificial Ncuvalone twvork) VIS chip
Jor sprech vicognition. VRAN. a newely doocloped analog-
digital hybrid wewval ehip, is discussed in respeets to ifs
inpul, ouipid, and weight arcuracy and their relations to
its ptrformance on speaber indopondent digu reeagnition.
Multi-tayor peveeptron(MEP) nais iuelnding a lirgr frame
wmpuf layer arc used 1o vocoquize n digit syllable i a for-
ward retvicval. The sipedation vesalts wsing the fidl and
timited flowting preeision computations for the fnput, out-
pul. and woight raviables of the witwork giee the compa-
rable classification performance. Au MLEP with prece wise
tinear badden and owlpui wnils is adso trained sueet ssfully

wsing tow tecniaey romputiol .

1 Introduction

As the nenral networks have the ability to learn [rom
expericoce and of generalization Lo new data, they provide
a prowising approach 1o the real world problems such as
speech recognition Lasks that lave variabilitics helween
examples of the same class. Nenral nelworks also olfers
polential advantage over existing approaches by providing
highly parallel avehilectires. The Targe compulational re-
guirements of newral networks and [heir inassively parallel
archilecture Lave led Lo a vmmber of hardware buplemen-
tations, Though hardware implementation of the nearal
networks has iany advantages. it involves practical Jifli-
enfties in speed, seale, and accuracy implementation. In
addition, the enlire system st be engincered, consid-
ering sweh issues as test and debigg, menory bandwidth
and latency, conmmmication hetween processors, 1/0, and
soltware fur real systems] ], We are now developing a re-
al Lime speech reeognition system nsing necat network
VLSI chips,

Jo ihis paper, URAN, the new analog-digita) hybrid
VLSI nenral network, s deseribed witl digital interlace
to conventional compnters. The implewentation of the
Back Propagation{131’) algovithnn cmploying limiled ac-
curacy available (o URAN chip is considered and applied
to speaker ndependent digit revognition. Thonglvarious
kinds of nearal uetwork models bave been proposed and
showed distinet performanre in speech recogailion areas,
we examine simple MLPx 1o find their adaptability to re-
duced precision of the network paraquters and the linear
outpul foetion which are availabie (o TRAN.

Fhe siinnlation results show that Lhe perfocmance of s-
praker independent. digit recognition is nol degraded for
the Hinited floating point precision equivalend to 8 hit ac-
curacy for input, onlput, aml weight as in Our previous
works[3]. The ML used in onr simndations has a lacge
muber of impul units to alline even the largest Jopnt. pat-
tern Lo be applicd 1o input nenrons at onee as a whole,
The temporal acoustic contexts are modeled inherently
without time novialization by padiling zeros to the input.
units withowt inpuat data, which yields the imvestigation
of the fundamental issues related 10 B1Y implemientation
on GRAN chip.

In addition, we performy a siamlation of on-chip learning
by emploving a piceewise lincar funetinn for hidden and
ontput nits instead ol sigmoidal activation fmetion. The
BP simulations using linear Wdden and outpit mnits gave
similar performance to those osing, sigmoidal wnits, once
tratning is completed with sigmoidal units. b addition,
an MLP with piccewise linear hidden and oniput units is
trained snecessfully and shows comparable pedformance
to the ones trained with sigmoidal wiiis.

Section 2 deseribes the URAN elip architecture. The
critical issues relabed with B hinplenwentations are .
resented in seetion 3 with 1he network architeetire and
{earning algorithim. Section 1 includes the speaker inde-
pendent digit recognition experinients and performance
ligures aceording to the inpul, oniput, and weight aceu-
racy. Preliminary investigation of on-cliip learsing using
a piccewise linear function is deseribed in section 5.

2 URAN-Universally Reconstructable Artificial
Neural-network

2.1 Chip Architecture

I general, most of digital. anatog, or analog-digital
mixed nenrg-chips are constrained in aceuracy, speed, size
or NMexibility.  There bas Been sade new advancement
in those aspects wilh the suggested analog-digital hybrid
neurat network circuit. The aceuracy is impraved by the
linear voltage-comtrolied MOSFEYT linear resistance cir-
cuit for the synapse ennlation. ‘Ihe speed is increased by
the digital neural state, The general llexibility is realized
by the inherent electrical characteristic of each synapse
cell and modular architectnre of chip.

Chip featnres are simmarized iy Table 1, As in TFa-
ble 1, Lthe chip performs undee the Jlexible control, that
is, the varicus mede of synaptic eonneclion per neuron,
thr extendille weight aceuracy and the unlimmited asyn-
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clhironous/direct intercliip expaosion in size and speed, I
fact, 16 Tally connecied module s selected from external
and ilu|(‘||('l1(|('l|l|_'_.' - cither one by one selection o all at
one sefection s possible as showo n Fige 10 Additional.
Iy, the speed or modnlarity of cach moduale is improved
by introdncing the individual external weight inpad . 'The
neural havdware of huge size and high speed s straight-

fovswardly implementalile with chips in The sione way as
the chap is with inadnle.

Considlering the operation of the eiredit itsell, all civenit -
s over the elip exeepd «digital decoder unit are operated
in analog, And as they are alinost virt nally static exeepl
tching trausis

prilation speed is high and even can he impraved substan-

tor controtled by nenval inpnt, the cony.

tially with the advanee ol meoory prodoction l(~|'|||m|ng;y.
As i basic colbo 9 crausistors ane used per cell ineluding
weighl memory, The cofl size mdhieding i egconnection
arca for VRANT s vedaced fo fess than 10 g i diaimae-
ter.

With the lincar voltage-conirolled hipolar enreent sonree
of cacl syvapse celfl the synaptic hction of mudiipli-
cation is done with the switeliing hansistor, e, bhalf-in-
analog and hall-i-digital, The use of hipolie pulse -
proved stray eflect Trom switehing. Pulse of neneal inpat
lor
that is. They are I‘ull._\- independent {rony cacl otler,

swilehing are nol Banited in stybel tine and mnnhers,

The linearity ts based on the compensated ehiomel resis-
Lanee ol halaveed contignration in the triode region, and
proved to have mare than 8 bit iF necessary, The acen
racy extendibiliy and flexilale modulacity are inlierent o
electrival wired-OR chitacter

s Trom cach independent

wlvgnens
pensable

I'Iill(lh‘lr' curtent sonpee. \'{] I'IIIH ig ar any s

operation s needed in this cases while it s ine
in most of conventianal digital newrad hardware of analog-
digital nenval cliip, Any size of network can e integrated

of implenwnded by merely placing the cell in 2 dimeusional

array withont copsidering The {inming vrequirement of dig;
ital or the load effeet of analog, [n the case of PRAN-L
the delay of control signal is considered in designing (he
logie interface due to the Tong path on the chip, O chip
digital inferface is depicted in g, 2,

pric couiecinons

Tzhl accuracy
gy
{symapses
Fitnction of

A2 x w,u=l w16
{electeivally programumble)
st | Fully asynelironons and direct

X pat elewctpieal swiped-OR Al antpug
Supply vollage SV -3V
<Chip size 1 % 13 memee

Terhnnlogy 1.0y dital CMOS
| POA package B in

Table 1 URAN-I features

2.2 The Critical Issues of BP limplementations on
URAN Chip

A lundamental hmitation of the use of the BP i the
training of an ML is the bigh degree of reguired compu:
tational accrurvacy. Three evitical issnes must be addressed
in the paralle! plementaiion of B1* on efficient hard-
ware[2]. These are availability of weight values for back
propagating the error. the sealing and preeision of compu-
tations. and the efficient hnplementalion of outpal trans-
fer function. Among them weight aceuracy and ontput
function are considered. FRAN ean be used (or retrieval

t( low weight accagacy and fincar ontpat function are al-
lowel,
ical issues mmst e adir

Theee eri
iplementation of B on olh
availahility of weight values for back propagating the er-
ror. the sealing and precision ol compntations, and the of-
ficient implementation of ontgut teanster fimetion(]. And
16 bit integer weigltts are knowa (o be sullicient for BP

«in the parallel
whardware, These are

tratdug and muede lower valhes adequate Tor ase after
training] | We can nse FRAN for retrieval only il Jow
woight acetracy
retrieval, Becanse the inpal and ontpat aceuracy uf 41-
RAN depend upon tHie clock fregneucy,

e weight accnracy of URAN chip is 8 bt To perfor-
in BI* simudations using the weight accuracy availabie o
GRAN chip, we first do vetrieval tests using the seduced

atd Jincar onf put fune ton s allowed for

Hloating point weight vidues which ave saved after noral
training phase, We also evalnate an extremely elficient,
Leadure vector for inpul. peak-weighied binary spectinn,
Lo ('.\']:|0il. Mlly URAN c'irip i ||ih'l'l.1|r‘l‘[-fi.

As the exact analysis of the non-linear output transfer
funiction on the analog hacdware is not possible, the out-
put of the netron chip s devised Lo provide linear une-
al tests with e linear
ontput fancGon T the synapse Traiued with non-linear

tiot, We second perform retie

oulput funciion,

Finally, we peform simudations of Ctaining weights amil
retvieving wsing the piceewise inear faoetion for the leaen-
ing equation derived fronn the sigmaid ont pat function. It
was impossilile Lo (raining weights with puare finecar fane-
tions, Thongl weight update precision should be consid-
crenl also for 1he ou-chip karning (o he possible, elaborate
output precision nsing tie fost clock frequeney and etfi-
cient weight npdate tedimsin nsing the off-chipy synapse
memory coubdl lead to realization of tHie nrl-('hip |:‘;|I‘I|i|lg
with the piceesise lineir ontput tenron as deseribed in
section 2.

3 Simulations Using Low Accuracy Computation
3.1 Speech Database and Preprocessing
The simulations were perlotmed 1o recognize isolated

10 Korcan digits, ‘Fhe database was vecorded in a silent
Fach

oflice room Trom 1 male aml 10 femade spea
digil was pronomeed 1 Gines by each speaker. There
were thus 2000 (okens in total. Among them 5 repeti-
tious of cach dbigit from 5 mede and 5 female speakers
S repedibrons x 10 drgits x W speakers = 500 tokens )
tniug. anel the othet data set ( 500 token-
ker

were nused fm' 1]

5 ) from the training speakers was used for amlii-spe
recognition 1est, and the remaining 10 speakers” data (
10 repctitions x W drgifs x 10 sprakors = 10U tokons)
w independent test.
Eacl ntievance was low-pass filterel up (o L7 kIlz, then
digilized at a 10 klfz sampling vate with 12 bit guantiza-
tion. Mannally endpointed speech data were preempha-
sized with a teansfer fanction Hiz) = 1 — 0.93:7". Alter
passiug {hrough a 20 ms 1limming window at a rate of
10 ms, [7-chamnel eeitical-band lilter hank analysis was
perforned to gel a 17 dimensional featnre vertor for cach
frame, The 17-channel eritical-band filter-bank was sim-
wlated by 552 point FIFF Fhe data presented (o the net-
works were simply scalel so that the vange of the largest
cocflickenl was approximalely Trom -3 1o,

A Binary feature veetor wlich is consisted of only 17 bits
{or cach frame was also ased for iopnt. The Dinacy spee-

were nsed Jor spes
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trum was obtained by (hresholding (he second derivative
of the normalized LPC spectrom, (hat is, by clamping
spectral peaks above thyeshold as s and {1he others as
0's. We bave nol performed word lengih nonnatization so
that vatiable number of feature vectors arve applied 1o the
inpul layer as a whole.

3.2 MLP Architecture and Training Algorithm

AIMLPs trained have 17 » 70 inpnt nearons, a vaviable
nunber of hidden newrons fron 20 10 30 amd 10 oulput
nenrons. The network avchitecluee ysed s ilustrated in
Fig. 3.

tn general, ML consists of weighted-sun with siginoidal
output functions, The activalion value of cutpul neuron
k is defined as fotiows.

O = —e (1}
Jpr 2ok BT

where (2, s the activation valne of hidden neuron . and
ey 15 the weight (rom hidden neuron § to onlpul neuron
k. The activation value of hidden neuron is also delined
hy the same Tunetion asing the activation value of input
aeuron aned weighls Trom inpuat (o hidden nearons,

During the teaiming process of MLP, the corors defined
i egualion (2) Lo be propagaded hetween Lhe Garget and
outpul values are calendated aller every feedlorward of in-
pul.

L= —:‘,Enli pistterns Eallurgety — Oy )" [2)

Changing the weights by a small amonol i the disee-
tion of steepest descent midnimizes the ereor and adjnsis
the internal parimmeters so as (o better model the 1arget
inpulfoulput pairs,

To aceclerate the learning specd a momentnn 5 is used
in the weight changes,

w, (1) = pSwg, 4w, (- 1) {3)

where 3 s the learning vates and 1 is the learning step.
The learning rate 3 and the momentiom 4 are set to 0.1
aund 0.9, respectively, :

The mitial strength of the weights are distributed ut-
formly and randomly from -0.5 10 L5, The learning pro-
cedure was repeated unbil the tolal-sum-of-squared-error
of the network reaches al .00, The recoguition phase vim-
ploys a winner-Lake-all vule which allows Uhe network to
keepr the most highly activated newron in outpat layer.

3.3 Speaker Independent Digit Recognition Results

First, we perfotmed simulations of 31 training and test-
g with redoved aceuracy of 1, 2, 1 deeimal places for
weight, input, and onlpul osing sigmoidal outpnt func.
tion. Each MLP has 30 bidden woits and is the learning
step was coustrained 1o HH. Phe speaker independen-
t digil. recognition resnlis for all of the reduced foating
point accaracy were aronsd 97 %, while the result of bi-
nary featire vertor was 88,4 %, :

Sevond, the above simnlations were repeated n Lhe recug-
nition phase using the linear ontpnt function as in equa-
tion (4). .

= ﬂ{zk ll!kj()j;l-I-l‘J, -A < Ek ”"ki().i < A {4)

The vesalis were not sensitive Lo ¢ and & if the domain

19932 % UIFYUY A =L TEN &Y 12 1{s)2)

of the Jinear function hroadly covers the sum-of-weighted-
input distributions, The sinpulation resulls are listed in
Table 2 and Table 3, in which « = 0.3, & = 0.5, and
A =3

Each MLP ontput hias 2 decimal places. ‘The MLP using
1 decimal place imput has weight acewracy of i decimal
place, the ML using binary input has weight accuracy of
2 decimal places. ML using reduced (Joating peint input
is trajned until 200 learning steps. and MLY wsing binary
imput antit 500 steps.

hidklen floating poibt ipput hinary jmnpit |
anits § [ 2 decimal | ) decimal 1 bil ]

20 9.2 % 05,6 % 96.6 %

3 ORH Y N 964 %

4 Y8.N % WA 9.0 Y

50 (L4 RR K 951 %

Table 20 Multi-speaker ligit recogmtion results

hidcten Noattog poid inpat bigary (npat.
wadts § [ 2 decoun) |1 ddecinal b it

M 6.4 4 un. | % Bu 2%

B 7.0 WF IEE3

A L] [IE] W7 Y

B0 £ a5 % R

Table 3: Speaker indlepeisdent dhigit recogpition results

We can conclude that the B retrieval is not aflect-
ed [rom the accuracy of weight, inpat. and ontput, when
traiming is cotpleted, lnaddition. traiming was also possi-
ble with 2 ov | dectnal places for inpul and ontpnt. which
are cquivalent (o 3 hit or 1 hit precisions.

Finally. wa performed training using linear ontput fune-
tons, As the Lraining using the simple finear functions
snel as eqnation (1) was nol accomplished, we used piece-
wise linecar Tunctions comdboed with 3 lincar Tnnetions,
By minimizing e mean squared error{MSE) hetween the
sigmoid atidd picerwise huear hinctions, a piecewise linear
funclion is fonnd as in cquation (5). The MSE becomes
zero when we caleutate it op to 3 decimal places.

Thie recognition vesults, of which MLPs are trained and
tested using the piceewise lincar function with 2 decimal
places of ontput resolution, are listed in Table 1. Al-
EMLs have 30 hidden newrons. and learning step was
the same as the previons conditions. The influence of the
onlput precision was negligibie for all cases ax shown in
the table, The performanee of MLP using binary inpat
was inereased 1o 925 % with inore slow slope function,
that is, the performance was not sensilive 1o the slope of
Lhe piecewise tinear function.

< =740
~Th<r< =22
2 << 2Y
220 <76
r>7.6

=100

¥ = 0.0087.r + OAK06,
y = 0,206 4 05,

y = D.0037r 4 0.931.
¥ =10,

(5)

floating point bimary input

-2 decimal |1 dech 1 hil
96.6 Y NG % W, %
2 devima) 9.6 Y% a6, % YUt %

Table 4: Recognition results of M1 P« wting piccewise linear unils
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Counclusions

I ithis paper, we deseeibed sinulation resnlts of the B1°
algorithns adapted for URAN ehip. and showed that the
reduced weight aceuvacy osing the linear output limetion
is enough Lo ohtain high pecformance in speaker tde-

pendent digil. recognition experiment s, onee (raining was

completed. We also illusteales (hat plecewise linear fune-

tions is useful for Gaining when learuing equations derived
from the sigmaoidal wnits ace cmploved. nsing TTRAN chip
and the simnlated BI? algoit luns,
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