사출금형부품의 특징형상의 분류기법 개발

경영민*, 조규진*, 류정렬**, 정영득***

* 부산대학교 산업공학과 ** 부산대학교 컴퓨터공학과
*** 부산공업대학교 금형공학과

ABSTRACT

최근 제품의 설계와 제조의 동기를 위해 제품설계 및 공정설계 분야에서 동시공학(concurrent engineering)의 개념을 도입한 부품의 특징형상(feature)에 대한 접근방법이 중요해져 왔다. 특징형상은 CAD/CAM 응용을 위한 정보전달의 매개체로서 CAPP 시스템 개발시의 CAD/CAPP 인터페이스에 중요한 기능을 가진다. 제조분야에서의 특징형상 적용은 특징형상인식(feature recognition)과 특징형상에 의한 설계(feature based design)의 두 가지 분야가 있으며, 이 두 분야 모두 특징형상의 상세한 정의와 분류를 필요로 한다.

본 연구는 특징형상의 기하학적 정의 및 분류를 위한 계기로 제시하고, 사출금형의 구성부품을 대상으로 특징형상의 기하학적 속성으로부터 특징형상의 분류기법을 개발한다.

1. 서론

최근에 외부 제품의 설계의 제조의 동기를 위해 제품설계 및 공정설계 분야에서 동시공학(concurrent engineering)의 개념을 도입한 부품의 특징형상(feature)에 대한 접근방법이 중요해져 왔다. CAD/CAM 응용을 위한 정보전달의 매개체로서의 특징형상은 CAPP 시스템 개발시의 CAD/CAPP 인터페이스에 중요한 기능을 수행한다.

제조분야에서 특징형상의 적용에는 특징형상인식(feature recognition)과 특징형상에 의한 설계(feature based design)의 두 가지 분야가 있으며, 이 두 분야 모두 특징형상의 상세한 정의와 분류를 필요로 한다.

Suh 등의 연구(2)에서는 두 프리미티브에 대해 boundary components을 생성하여 convexity analysis를 수행한 결과로 intersection edge loop의 convexity를 고려하여 상가물의 수행 도중에 들출 또는 함몰된 특징형상을 동적으로 생성하기 위한 방법론을 제시하고 있다. 또한 이 방법에서의 특징형상의 수형관계에 의해 특징형상간의 간섭형상을 해결할 수 있어 동시공학 환경에서의 feature based modeling에 효과적이지만, 표현할 수 있는 특징형상의 종류가 제한되어 있어 실제 적용에 한계가 있고, 특징형상의 제계적인 분류방법에 대해서는 언급되어 있지 않다.

Gindy(1)는 특징형상을 entry boundary, exit boundary 및 depth boundary로 구성된 bounded volume으로 간주하고, 특징형상에 대한 외부접근방향(External Access Direction: EAD)의 수와 특징형상의 perimeter의 태입(open 또는 closed) 및 exit boundary의 태형(through 또는 not through)의 3가지 패턴을 이용하여 보스, 포켓, 구멍, 비각통iationException, 균등通Thumbnail, 노치, 스냅, 설계면 및 가상면 등 9가지의 주특징형상(primary features)으로 분류하였다.

본 연구에서는 특징형상의 기하학적 정의 및 분류를 위한 계기로 제시하고, 사출금형의 구성부품을 대상으로 특징형상의 기하학적 속성으로부터 특징형상의 분류기법을 개발한다.

2. 특징형상 분류기법의 개발

2.1 특징형상의 정의

특징형상의 정의에 대해서는 많은 연구결과에서 언급되고 있으며(3~6), 특징형상은 일반적으로 설계 또는 제조의 관점에서 정의되고, 적용하고자 하는 영역에 대한 의존성이 크다는 특성을 가지는다.

본 연구에서 특징형상은 "부품형태를 서술하기 위한 기하학적 및 위상적 레이어로 분해하는 형상의 집합으로, 기하학적 및 형상정보의 기능자력이 비형상정보를 융합으로 가며 실제 제품이나 가공대상이 되는 기반적인 형상요소"라고 정의한다.

지급까지의 연구에서는 설계특징형상과 제조특징형상을 분류하는 단순한 체계가 정립되어 있지 않았기 때문에, 적용영역에
따라 나름대로의 특정형성을 정의하는 방법을 취하였다. 또한, 형태, 위치, 정보의 타입 및 설계의 어떤 등에 따라 특정형성을 분류하기도 하였으며, 이러한 기준에 따른 분류는 실제적으로 설계 또는 제조특징성의 속성으로 표현될 수 있는 성능을 가진 것들도 부분적으로 포함하고 있다. 정보의 타입에 따라 분류되어지는 특정형성으로는 허용공차를 나타내는 정도특징형성(precision features), 제품의 구성이나 처리방법을 설명하는 재료특징형성(material features), 기술적인 제작조건 등을 설명하는 기술적 특징형성(technological features) 등이 있으며, 이들 특성은 특정형성의 속성으로서 표현할 수가 있다.

2.2 시침형성부품에서의 특징형성의 기하학적 표현

기계가공은 주어진 실재로에서 일부의 체적을 제거함으로써 이루어지는 절삭작업의 대부분을 차지한다. 따라서 본 연구에서는 기계가공의 특성인 ‘체적제거공정(volume removal process)’을 기준으로 특징형성의 표현방법을 제시한다. 기계가공은 기계가공의 대표적인 제품의 하나인 시침형성부품이며, 따라서 소재의 형상은 적작궤면 형상을 동반한다.

본 연구에서 제안하는 특정형성의 표현방법은 개념적으로 살펴가며 그림 1에 표시한 간문슬롯(through slot) 형상을 예로 들어 설명한다.

그림 1. 간문슬롯의 VRDs 및 VFs

그림 1에 나타낸 비와 같이 제조의 관점에서 본 간문슬롯 형상은 절삭으로 된 적작궤면 형상으로, 이 부분이 가공에 의해 제거되는 재료이다. 이 간문슬롯의 형상을 체적형 형상을 변형시켜서 바이오 블록으로부터 제거할 수 있는 범위는 그림의 화살표와 같이 Y+, Y- 및 Z+의 3가지 방향 둘다. 이 리고 가공대상이 되는 체적이 제거됨으로써 만들어지는 형상은 그림 1에서 각각의 파란 형상이 되며, 이의 3가지 방향의 각 지점에 대해 한 폭의 수직한 면들이 존재한다. 이 면, '방향요소'를 체적제거방향(Volume Removal Directions; VRDs), 각 방향에 대응하는 수직한 면으로 구성되는 사각형(Vertical Faces; VFs)이라고 하며, 이 두 요소의 조합에 의해 특정형상을 유일(unique)하게 표현하는 것이 가능하다. 즉, 가료한 제작제거방향의 수가 3이고, 한 수직면의 조합이 (1)로 표시될 때 다, 1는 Imaginary surface를 의미하며, 그 표현규칙에 대해서는 위에서 설명한 것, 이 형상을 ‘간문슬롯’이라고 정의할 수 있다.

2.2.1 체적제거방향(Volume Removal Directions: VRDs)

기계가공은 원소재의 일부를 절삭작업에 의해 제거하는 과정이며, x, y, z 직교기표축을 기준지표계로 하여 체적제거방향(VRDs: Volume Removal Directions)의 개념을 적용한다.

체적제거방향은 원소재에서 제거된 형상을 제작의 변형없이 원상대로 유지하면서 x, y, z 축의 양 또는 음의 방향으로 이동(즉, 제거가능한 형상)이라고 정의한다.

[정의 1] 체적제거방향 정의의 정의

체적제거방향의 집합을 S(VRDs)라고 하고, 다음 가 같이 체적제거방향의 x, y, z 요소들의 순서쌍(ordered pairs)으로 이루어지는 집합으로 표시한다.

Let, \(i: index \ for \ x, y, \ or \ z \ axis \)
\[j: positive(+), \ or \ negative(-) \ direction \ along \ to \ i \ axis \]

\[S(VRDs) = \{ (u_x(+), u_y(-)), \]
\[(v_x(+), u_y(-)), \]
\[(u_x(+), v_y(-)) \} \]

where, the value of \(u(x,j) \),
if a volume can be removed to j direction
along to i axis
then, the corresponding element \(u(x,j) \) has
the value of 1
otherwise, \(u(x,j) \) has the value of 0

체적제거방향이 가질 수 있는 값의 범위는 0 ~ 5이며, 특정형성의 분류에 가장 기본적인 요소로 사용한다. 그림 1에 나타난 '간문슬롯(through slot)'의 경우에 체적제거방향은 Y+, Y- 및 Z+의 3 가지이다.

2.2.2 수직면(Vertical Faces; VFs)

“체적제거방향에 속하는 각 방향가 만나는 형상구성면의 범”
음 수직면이라고 정의하며, 체적제어방향과 함께 특징형상의 분류에 사용된다. 그림 1에서 체적제어방향의 한 요소인 ‘2’의 경우를 고려하면, 수직면은 면 \(F_0 \)의 면 \(F_0 \)이며, 특히 면 \(F_0 \)을 진입면(entrance surface), 면 \(F_0 \)을 지지면(supporting surface)이라고 부른다.

[정의 2] 진입면, 지지면 및 수직면의 정의

임의의 체적제어방향과 반대의 방향을 가지는 하나의 방향이(다)를 고려한다. 박터 \(a \)가 방향을 그대로 유지하면서 진행될 때,

i) 대응되는 체적과 최초로 교차하는 절을 포함하는 형상구성면을 진입면(entrance face),

ii) 대응되는 체적을 벗어나는 절을 포함하는 형상구성면을 지지면(supporting face),

iii) 진입면과 지지면의 순서쌍을 임의의 한 체적제어방향에 대응하는 수직면(vertical faces)

이라고 정의한다.

수직면은 하나의 체적제어방향에 대해 진입면과 지지면의 순서를 가지는 것으로 표현되며, 진입 제어방향에 대한 모든 수직면은 진입을 \(S(VF) \)로 표시하면 다음과 같이 정의한다.

[정의 3] 수직면의 집합의 정의

수직면의 집합 \(S(VF) \)는

\[
S(VF) = \{(f_x, f_y)^T, (f_x, f_z)^T, (f_y, f_z)^T\}
\]

\[
\text{where, } f_x: \text{entrance face} \\
\text{f_y: supporting face} \\
\text{superscripts: VFRs}
\]

로 정의되며, 각 체적제어방향별 수직면 요소는 \(S(VFRs) \) 내의 대응하는 요소가 1 disemb에만 의미를 가진다. 단, real surface를 ‘R’, imaginary surface를 ‘I’라고 들 때, \(S(VF) \)의 각 요소는 (R,R), (I,I) 중에서 하나의 형태를 가진다.

수직면은 체적제어방향의 반대방향으로 진행하면서 진입면과 지지면을 각각 정의하기 때문에, 위의 [정의 3]에서 \(S(VF) \)의 요소는 (R,R)의 형태를 취할 수가 없다.

2.3 특징형상의 분류경계

체적제어방향 집합의 수직면 집합에 속하는 각각의 요소들의 조합에 근거하여 특징형상을 분류할 수 있다. 즉, 가능한 체적제어방향의 수와 수직면(진입면 및 지지면)의 특성과(surface characteristics)의 조합에 따라 포스, 포켓, 스탠, 슬롯, 구멍 등의 특징형상을 구별할 수 있다. 변환성은 '고려하고자 하는 체적제어방향의 반대방향으로 진행할 때 최초로 만나는 점을 포함하는 형상구성면(진입면)과 특징형상을 벗어나는 점을 포함하는 형상구성면(지지면)의 실질적인 존재여부를 나타내는 성질'으로 정의하며, 이 특성은 가공 후에 해당면이 슬리드로 남는 경우(real solid face)가 적용되어 있음을 의미하는 경우(imaginary face)의 2 가지로 나누어진다.

제거된 임의의 체적요소가 이동가능한 방향을 제외한 양 또는 음의 방향에 의해 치타 6가지로 표현되며, 체적제어방향 순서쌍은 다음과 같은 성질을 가진다.

[생성 1] 체적제어방향 순서쌍의 성질

임의의 [정의 1]에서 임의의 방향의 순서쌍들은 다음과 같은 성질을 가진다.

i) if there exists any one and only one pair of the \((1,1)\), then it is a through-type feature

ii) if there exist exactly any two pairs of the \((1,1)\), then it is a plainplate feature

iii) if there exists any combination of the pairs of \((1,0), (0,1) \) and \((0,0) \) except for the case of the \{property iv\},

then it is a blind-type feature

iv) if all pairs are \((0,0)\),

then it is a surface feature

v) for all cases except for the above cases

it is a meaningless, unclassifiable or an even impossible feature

[생성 2] 수직면 집합요소의 성질

i) \(S(VFRs) \)의 요소 중에서 \((1,0)\) 또는 \((0,1)\) 요소에 대응하는 \(S(VF) \) 요소 중에서 \((I,R)\) 형태를 취하는 요소의 수는 \#(VFRs)와 함께 특징형상의 분류에 사용된다.

ii) \(S(VFRs) \)의 요소 중에서 \((0,0)\)\(\)와 \((1,1)\) 요소에 대응하는 \(S(VF) \) 요소는 특징형상의 분류에 직접적인 관계가 없다.

이상에서 기술한 정의 및 성질에 근거하여 특징형상을 분류하는 과정을 도식화하여 나타내면 그림 2와 같다. 그림에서 \(\text{차사표} \)는 가능한 체적제어방향을 나타낸다.
그림 2에서 보인 특징형상의 분류방법을 정리하면, 제적제거방향의 수와 그에 따른 수직면 접합의 (LR) 요소의 개수로부터 그림 3과 같은 특징형상의 분류특성을 임을 수가 있다. x, y, z 직교좌표계의 각자 음의 방향에 따라 제적제거방향의 수는 최대 6으로 주어지지만, 제적제거방향의 수가 6인 경우에는 가공해 의해 이루어질 수 있는 형상은 나타낼 수가 있기 때문에 특정형상을 분류할 수가 있다. 그리고 평판(plain plate)은 편평 등의 가공방법에 의한 천지계의 명시가능부분을 의미한다.

3. 고찰

그림 3에 주어져 있는 제적제거방향의 수의 수직면의 변명도의 조합으로부터 특정형상을 분류할 수 있다는 것을 보였다. 이 분류방법에 의하면 설계와 제조의 측면을 동시에 고려한 특정형상의 정의가 가능하다. 즉, 설계기능의 수행에 있어서는 일반적으로 받아들임으로써 설계특정형상을 사용한 feature based design 방법을 적용할 수 있고, 이를 이용하는 시스템에서는 제적제거라는 관심에서 특징형상에 관련된 정보를 얻을 수 있을 뿐만 아니라, 특징형상을 숫자로 가는 프레임 구조로 표현함으로써 가공형정보에 관한 데이터의 보존이 보다 효율적으로 이루어질 수 있다.

본 연구에서 도입한 제적제거방향은 공정계획에 있어서의 공구접근행성 결정에 적절하게 사용될 수 있다. 비주얼화의 경우에, 가능한 공구접근행성은 2가지이지만, 실제 제도 적용되는 가공방향은 사람의 가공결과가 간편한 주식으로 하여 결정된다. 이와 같은 공구접근행성은 항상 제적제거방향과 반대의 방향을 가진다. 또한 수직면을 구성하는 직선면의 저지면의 형상을 비교함으로써 실제 가공사에 잘 사용되지 않거나 불가능한 공구접근행성을 사전에 구별하는 것이 가능하게 되어 보다 효과적인 공정계획을 수행할 수 있다.

제적제거방향의 조합의 요소로부터 공구접근행성을 결정할 수가 있다. 즉, S(VRDa)의 요소 중에서 (1,1)인 요소가 있는 경우에는 이에 해당하는 방향을 공구접근행성으로 결정하는 것이 타당함을 알 수 있다.

본 연구에서 사용된 특정형상의 분류방법과 유사한 것으로는 EAD(External Access Direction)의 수, 경계(boundary)의 타입 및 이탈경계의 상태(exit boundary status)의 3가지 벤더미터의 조합에 의한 방면[1]이 있으며, 본 연구에서 개발된 방법에 의하면 이보다 더 적은 수의 벤더미터를 이용하여 특정형상을 분류할 수가 있다. EAD에 의한 방면에서는 7가지의 EAD 벤더미터에 대해 허용한 2단계의 추가가로스를 포함하여 특정형상을 분류할 수 있으나, 본 연구에서 개발한 방법에서는 6
가시의 VRD 테러메타에 대해 수직면의 영향변을 추가로 고려함으로써 동일한 수의 기본특성상의 분류를 하는 것이 가능하다.

4. 결론

본 연구에서는 CAD/CAM의 영역적용을 하는 CAPP 시스템의 개발과 관련하여 CAD 시스템의 설계정보데이터를 공정계획시스템에 효율적으로 전달할 수 있는 방법에 대하여 고려하였다. 이를 위해서는 세부적 구조를 가지는 특정성을 위한 설계기술이 적합하며, 구체적으로는 특정성을 대한 명확한 분류체계를 정립하는 것이 필수적이라고 판단된다.

체적제거방향(VRDs)의 수와 수직면(VFs)의 번복성을 사용하여 기본특성상의 분류체계를 제안하였다. 또한 수직면의 행성에 관한 정보를 추가함으로써 특성상의 구체화가 가능하다. 체적제거방향은 설계의 가공시간 공구접근방향을 결정하는데 직접적으로 이용될 수 있어, 설계기술의 수행과정에서 이에 공구접근방향에 대한 가능성을 명시함으로써 공정계획을 보다 효과적으로 수행할 수 있다. 이와 함께, 각각의 공구접근방향에 해당하는 공작을 고정위치에 대한 의사결정을 순차적으로 할 수 있는 부수적인 효과도 기대할 수 있을 것으로 생각된다.

또한 기존의 유사한 연구결과와 비교해 볼 때, 이상은 수의 테러메타를 사용하여 효과적으로 기본특성상의 분류를 수행할 수 있다.

본 연구에서 개발한 특성상 분류기법은 시공간특성을 대상으로 하여 특정상에 의한 설계시스템, 공정계획시스템 개발, 공정계획시스템 등의 관련연구분야에 계속하여 적용하고자 한다.

참고문헌