A Effect of Cutting Resistance by Setting Angle According to the Cutting Condition in Turning

Sin Keun Ha* . Lee Soo Yoing**

Abstract

This study provides the useful actual data instead of the experience data using in industrial fields. Especially, values of each components of cutting force are effective in the rake angle, setting angle and cutting area. Many researches have been made on the work piece materials, kinds of bite materials, rake angle, nose radius and depth of cut, but a few on the bite setting angle. In order to select optimal cutting speed, it was summarized the following results are achieved:

A chieved that an affect of cutting resistance on the setting angle is a little under giving experimental conditions and therefore a worker can be choose the value of it randomly.

1. 서 론
기계공업의 발전은 초기의 성공적 바탕을 토대로 다양한 발전을 거듭 하였다. 최근에는 공작기계의 고속화, 고정밀화, 자동화의 요구와 제품의 품질향상 및 생산성의 증대에도 기여해야 하기 때문에, NC, CNC, DNC, FMS, CIM 시스템 개발을 위한 다양한 연구가 활발히 이루어 지고 있는 실정이다. 이러한 자동화 공작기계의 대부분이 컴퓨터와 연계된 자동제어 등의 복합체이트로 적은 충격, 전동, 열 등의 취약성이 항상 존재하기 때문에 미세한 절삭 조건의 변화에도 민감하게 반응한다. 따라서 피삭재에 따른 적정공구 선정, 절삭조건의 변화와 관련된 절삭가공기술에 대한 관련이론 해석 및 실험적 연구가 중점없이 이루어져야 할 과제이다. 절삭가공에 관한 연구로는 Kronenberg의 이론적 해석을 기초로하여, Taylor(1), Merchant(2), Kronenberg(3) 등의 공구 수명에 관한 실험연구와 Greenhow, Loewen과 Shaw(5) 등이 절삭속도 및 이송의 변화가 절삭에 미치는 영향에 대하여 연구하였다. 이와같이 이론적 연구는 상당한 수준에 이르렀으나, 실험적 연구는 여기에 미치지 못하고 있는 실정이다. 특히 절삭정밀 각 분야들의 크기는 경사각, 설치 각, 절삭면적 등의 영향을 받는다. 여기에는 피삭재 재질, 마이크로의 종류, 이송, 절삭길이 등에 관련된 부분에는 다양하게 연구되어 있으나 설치각에 대하여는 연구된 자료가 그리 많지 않고 대부분 현장에서 현장 경험자의 경험치에 의하여 사용되고 있는 실정이다.

* 아주대학교 기계 및 산업공학부
** 성남기술대학 생산자동화학과
실험조건으로는 설계자, 절삭속도, 이송, 절삭 값이를 변화시켜 실험하였다. 설계자이 절삭조건에 따라 절삭저항에 어떠한 영향을 미치는가를 분석, 고찰하여 산업현장에서 사용할 수 있는 설치가 조건을 제시 하고자 한다.

2. 실험장치 및 방법

2-1. 실험기기
본 실험에서 사용한 실험기기의 제공을 정리하여 표시하면 Table 1과 같다.

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description and specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lathe</td>
<td>1st class : DA-18 대우 Co. swing×Length between center 400 × 750 spindle speed : 45-1600</td>
</tr>
<tr>
<td>3</td>
<td>Charge Amplifier</td>
<td>Type : 5019A 110V or 220V 60 Hz 8 Channel Product : KISTLER Switzerland Co., Ltd</td>
</tr>
<tr>
<td>4</td>
<td>Computer</td>
<td>Type : Spc 7600P Product : 삼성 Co., Ltd</td>
</tr>
<tr>
<td>5</td>
<td>Inverter</td>
<td>Type : Starvert-I 53 0~400 Hz Product : LG Co., Ltd</td>
</tr>
</tbody>
</table>

2-2. 사용공구
본 실험에 사용한 절삭공구는 강의 고속점삭과 중속점삭 및 고이송에 유리한 경질 꼬락공구 인서트팁(Insert tip NC30P, TNMG 120404 GM Korloy Co)이며, 그 규격과 치수 형상 및 특징은 Table 2와 같다.

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Thickness</th>
<th>Edge Length</th>
<th>Clearance Angle</th>
<th>Nose Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>TNMG</td>
<td>4.76</td>
<td>16.5</td>
<td>0°</td>
<td>0.4</td>
</tr>
<tr>
<td>30P</td>
<td>-GM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2-3. 공구-holder
본 실험에 사용한 공구-holder(PTGNR 2020-K 16 Korloy Co)의 규격은 Table 3과 같다.

<table>
<thead>
<tr>
<th>형</th>
<th>번</th>
<th>H</th>
<th>W</th>
<th>L</th>
<th>S</th>
<th>h</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTGNR 2020-K16</td>
<td>20</td>
<td>20</td>
<td>125</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

2-4. 사용재료
본 실험에서 사용한 재료는 일반적으로 널리 사용되는 SM15C를 사용하였으며, Table 4는 SM15C의 화학적 성분비를 Fig. 1은 시험관의 형상을 나타낸다.

<table>
<thead>
<tr>
<th>Material</th>
<th>Chemical Composition(Wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>SM15C</td>
<td>0.158</td>
</tr>
</tbody>
</table>

Fig. 1 Specimen Dimension
2-5. 실험장치
본 실험을 위한 실험장치는 Fig. 2와 같으며, 인버터 팀을 고정시킨 공구홈더(PTGNR 2020-K16)를 결합공구로 공구동력계에 고정시켜 실험하였다. 이때 필요한 전략속도를 얻기 위하여, 인버터(Inverter Starvert-is3)의 주파수를 변화 시켜 필요한 회전수를 설정하였고, 얕은소자형 공구동력계(Kistler 9257B)에서 측정한 전력력을 예비차밀 자치 엠프리파이어(Mult Channel Charge Amplifier; type 5019A)를 통해 A/D 변환기에 의해 디지털 전압신호로 변환시켜 컴퓨터에 저장하였다.

Table 5 Turn by Variable Frequency of Inverter

<table>
<thead>
<tr>
<th>RPM</th>
<th>Inver.</th>
<th>370</th>
<th>1000</th>
<th>1600</th>
<th>Inver.</th>
<th>370</th>
<th>1000</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>RPM</td>
<td>rpm</td>
<td>rpm</td>
<td>rpm</td>
<td>Hz</td>
<td>rpm</td>
<td>rpm</td>
<td>rpm</td>
</tr>
<tr>
<td>36</td>
<td>1080</td>
<td>234</td>
<td>638</td>
<td>994</td>
<td>56</td>
<td>1080</td>
<td>265</td>
<td>988</td>
</tr>
<tr>
<td>37</td>
<td>1110</td>
<td>242</td>
<td>660</td>
<td>1021</td>
<td>57</td>
<td>1710</td>
<td>372</td>
<td>1004</td>
</tr>
<tr>
<td>38</td>
<td>1140</td>
<td>250</td>
<td>673</td>
<td>1048</td>
<td>58</td>
<td>1740</td>
<td>378</td>
<td>1022</td>
</tr>
<tr>
<td>39</td>
<td>1170</td>
<td>257</td>
<td>697</td>
<td>1090</td>
<td>59</td>
<td>1770</td>
<td>384</td>
<td>1040</td>
</tr>
<tr>
<td>40</td>
<td>1200</td>
<td>265</td>
<td>725</td>
<td>1106</td>
<td>60</td>
<td>1800</td>
<td>390</td>
<td>1058</td>
</tr>
</tbody>
</table>

2-7. 실험방법
제작한 시험편을 Fig. 2와 같은 실험 장치에서 선반의 주축에 시험편을 다이얼 인더케이터로 1/100 mm내로 정확히 고정하고 삼각대에 목록센터(Bearing Center)로 고정하게 지지하였다. 정확한 회전수를 얻기 위하여 타코메터로 회전수를 확인한 후 정확한 데이터를 얻기 위하여 선반을 5분 이상 공전시킨 후 5~6회에 걸쳐 메시실험 후 측정하였다.

필요한 설치각(Setting angle)을 얻기 위하여 공구동력계의 임의의 각도로 변화시킬 수 있도록 선반의 회전대를 사용하여 지그를 설계하므로 설치각의 변화를 조정하여 실험하였으며, 실험 점착조건은 Table 6과 같다. 시험편은 φ60에서 φ40 mm 까지 약 20 mm 정도 점착하면서 실험하였다.

Table 6 Cutting conditions for Experiment

<table>
<thead>
<tr>
<th>Setting angle</th>
<th>Cutting speed</th>
<th>Feed</th>
<th>Depth of cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>9°</td>
<td>80</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>80°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. 실험 결과 및 고찰

본 실험에서는 제작사의 추천절삭속도 범위 내에서 일반적으로 사용하는 Table 6에 의한 절삭조건으로 3각 인서트 팀(Throw away tool tip NC30P TNMG-120404GM)을 사용하여, SM15C를 양면소자형 공구동력계(Kistler 9257B)에서 측정한 절삭력은 Table 7~10과 같다.

설치각에 따른 절삭저항의 변화 Fig. 3~5, 절삭 속도에 따라 설치각이 절삭저항에 미치는 영향 Fig. 6~8, 절삭깊이에 따라 설치각이 절삭저항에 미치는 영향 Fig. 9~11, 이송에 따라 설치각이 절삭저항에 미치는 영향 Fig. 12~14. 각각, 이것을 분석 고찰한 내용은 다음과 같다.

<table>
<thead>
<tr>
<th>Table 7 Data of Cutting Force (90°)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cutting speed</th>
<th>80 m/min</th>
<th>120 m/min</th>
<th>160 m/min</th>
<th>200 m/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>cutting component</td>
<td>cutting component</td>
<td>cutting component</td>
<td>cutting component</td>
</tr>
<tr>
<td>feed of cut</td>
<td>Fv</td>
<td>Ff</td>
<td>Ff</td>
<td>Ff</td>
</tr>
<tr>
<td>0.2 mm / rev</td>
<td>0.4</td>
<td>233</td>
<td>130</td>
<td>230</td>
</tr>
<tr>
<td>0.6</td>
<td>342</td>
<td>145</td>
<td>300</td>
<td>143</td>
</tr>
<tr>
<td>0.8</td>
<td>375</td>
<td>145</td>
<td>270</td>
<td>145</td>
</tr>
<tr>
<td>1.0</td>
<td>395</td>
<td>150</td>
<td>330</td>
<td>154</td>
</tr>
<tr>
<td>0.3 mm / rev</td>
<td>0.4</td>
<td>300</td>
<td>150</td>
<td>275</td>
</tr>
<tr>
<td>0.6</td>
<td>450</td>
<td>164</td>
<td>250</td>
<td>141</td>
</tr>
<tr>
<td>0.8</td>
<td>550</td>
<td>171</td>
<td>340</td>
<td>154</td>
</tr>
<tr>
<td>1.0</td>
<td>670</td>
<td>185</td>
<td>391</td>
<td>181</td>
</tr>
<tr>
<td>0.4 mm / rev</td>
<td>0.4</td>
<td>350</td>
<td>160</td>
<td>350</td>
</tr>
<tr>
<td>0.6</td>
<td>540</td>
<td>173</td>
<td>265</td>
<td>164</td>
</tr>
<tr>
<td>0.8</td>
<td>690</td>
<td>184</td>
<td>325</td>
<td>163</td>
</tr>
<tr>
<td>1.0</td>
<td>850</td>
<td>196</td>
<td>400</td>
<td>186</td>
</tr>
<tr>
<td>0.5 mm / rev</td>
<td>0.4</td>
<td>440</td>
<td>180</td>
<td>440</td>
</tr>
<tr>
<td>0.6</td>
<td>660</td>
<td>193</td>
<td>275</td>
<td>163</td>
</tr>
<tr>
<td>0.8</td>
<td>850</td>
<td>230</td>
<td>420</td>
<td>220</td>
</tr>
<tr>
<td>1.0</td>
<td>1170</td>
<td>255</td>
<td>520</td>
<td>220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 8 Data of cutting force (80°)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>depth of cut</th>
<th>cutting component</th>
<th>cutting component</th>
<th>cutting component</th>
<th>cutting component</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 mm / rev</td>
<td>0.4</td>
<td>238</td>
<td>134</td>
<td>231</td>
<td>137</td>
</tr>
<tr>
<td>0.6</td>
<td>345</td>
<td>148</td>
<td>280</td>
<td>133</td>
<td>220</td>
</tr>
<tr>
<td>0.8</td>
<td>388</td>
<td>150</td>
<td>275</td>
<td>150</td>
<td>275</td>
</tr>
<tr>
<td>1.0</td>
<td>445</td>
<td>150</td>
<td>345</td>
<td>150</td>
<td>345</td>
</tr>
<tr>
<td>0.3 mm / rev</td>
<td>0.4</td>
<td>305</td>
<td>145</td>
<td>295</td>
<td>147</td>
</tr>
<tr>
<td>0.6</td>
<td>455</td>
<td>160</td>
<td>290</td>
<td>147</td>
<td>270</td>
</tr>
<tr>
<td>0.8</td>
<td>555</td>
<td>165</td>
<td>340</td>
<td>150</td>
<td>340</td>
</tr>
<tr>
<td>1.0</td>
<td>665</td>
<td>185</td>
<td>400</td>
<td>185</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 9 Data of cutting force (70°)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>depth of cut</th>
<th>cutting component</th>
<th>cutting component</th>
<th>cutting component</th>
<th>cutting component</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 mm / rev</td>
<td>0.4</td>
<td>240</td>
<td>135</td>
<td>240</td>
<td>135</td>
</tr>
<tr>
<td>0.6</td>
<td>350</td>
<td>147</td>
<td>300</td>
<td>143</td>
<td>260</td>
</tr>
<tr>
<td>0.8</td>
<td>398</td>
<td>148</td>
<td>280</td>
<td>146</td>
<td>270</td>
</tr>
<tr>
<td>1.0</td>
<td>450</td>
<td>150</td>
<td>345</td>
<td>147</td>
<td>345</td>
</tr>
<tr>
<td>0.3 mm / rev</td>
<td>0.4</td>
<td>310</td>
<td>135</td>
<td>295</td>
<td>147</td>
</tr>
<tr>
<td>0.6</td>
<td>470</td>
<td>147</td>
<td>350</td>
<td>147</td>
<td>350</td>
</tr>
<tr>
<td>0.8</td>
<td>560</td>
<td>160</td>
<td>340</td>
<td>147</td>
<td>340</td>
</tr>
<tr>
<td>1.0</td>
<td>670</td>
<td>185</td>
<td>430</td>
<td>185</td>
<td>430</td>
</tr>
</tbody>
</table>

0.5 mm / rev	0.4	430	160	430	160	430	160
0.6	550	180	550	180	550	180	
0.8	670	200	670	200	670	200	
1.0	1110	245	1110	245	1110	245	
3-1. 바이트 설정각(Setting Angles)에 따른 절삭저항의 변화

바이트 설정각에 따른 절삭저항의 변화는 Fig. 3-5에서 나타난 바와 같이 설정각이 감소함에, 주분력과 배분력 값은 증가하고 이송분력은 감소하는 현상을 나타낸다. 이때 주분력은 설정각이 감소할수록 비례적으로 증가한다고 함께 절삭 속도 80 m/min와 120 m/min 사이에서 절삭저항 값이 큰 차이를 나타내며, 이 구간이 구성인선 임계속도 구간으로 해석된다. 이송분력은 설정각이 감소함에 따라 절삭저항이 감소하며 이러한 현상은 절삭저항 힘의 합성에서 힘의 균형을 유지하기 위한 현상으로 해석된다. 배분력은 설정각이 감소할 때 비례적인 상승을 나타낸다.

설정각에 따른 절삭저항값은 비소하여, 작업자의 필요에 따라 설정각을 선정해도 좋을 것으로 사료된다.
3-2. 전속속도에 따라 설치각이 절삭저항에 미치는 영향

절삭속도에 따라 설치각이 절삭저항에 미치는 영향은 Fig. 6-8에서 나타난 바와 같이 절삭속도가 증가 할수록 절삭저항 3분력은 모두 감소하는 현상을 나타낸다. 절삭저항의 감소 현상은 절삭속도 증가에 따른 마찰열로 인한 가공물의 경도저하 및 침의 형성에 따른 소성변형 시간 단축으로 인한 절삭력의 크기가 감소하는 현상, 구성인선(B. U. E)의 감소 및 소멸의 영향으로 해석된다. 주분력은 절삭속도 120 m/min에서 설치각이 무관하게 절삭저항이 크게 감소하는 현상으로 비추어 구성인선 임계속도는 설치각에 관계없이 120 m/min에 근사함을 예측할 수 있었다. 이론분석은 절삭속도가 증가함에 따라 감소하며, 설치각이 0°일 때 절삭저항값이 가장 크고 설치각이 60°일 때 가장 적은 값을 나타내며, 이러한 현상은 주분력과, 배분력의 정반대 현상으로 절삭저항의 힘의 형성에서 힘의 균형을 유지하기 위한 현상으로 해석된다.

그러나 절삭속도에서 절삭저항이 미치는 영향은 매우 미소하여 설치각이 절삭속도 선정에는 많은 영향을 주지 않는 것으로 해석된다.

3-3. 전속 갯이에 따라 설치각이 절삭저항에 미치는 영향

절속간이에 따라 설치각이 절삭저항에 미치는 영향은 Fig. 9 ~ Fig. 11에서 나타난 바와 같이 절속간이가 증가하면 절삭저항 3분력 모두 증가한다. 주분력은 \(F_c = K_s A) \) 식과 잘 일치하는 것으로 해석된다. 이론분석은 설치각 0°일 때 절삭저항값이 가장크고, 설치각 60°일 때 절삭저항값이 가장적이다. 이것은 4-2의 이론분석과 동일한 현상이다. 절속간이에 따라 설치각이 절삭저항에 미치는 영향은 주분력 < 이론분석 < 배분력 순이며, 그 영향은 미소하다.
3-4. 이송에 따라 설치각이 절삭저항에 미치는 영향

이송에 따라 설치각이 절삭저항에 미치는 영향은 Fig. 12 ~ Fig. 14에서 나타난 바와 같이 이송이 증가하면 절삭저항 3분력 모두 증가한다. 이송에 따라 설치각이 절삭저항에 미치는 영향은 주분력<이송분력<배분력순이며, 그 영향은 미소한 편이다.

Fig. 9 Effect of Vertical Component on the Depth of Cut Speed Cutting Resistance by Setting Angle

Fig. 10 Effect of Axial Component on the Depth of Cut Speed Cutting Resistance by Setting Angle

Fig. 11 Effect of Radial Component on the Depth of Cut Speed Cutting Resistance by Setting Angle

Fig. 12 Effect of Vertical Component on the Feed Speed Cutting Resistance by Setting Angle

Fig. 13 Effect of Axial Component on the Feed Speed Cutting Resistance by Setting Angle
4. 결론

1) 베이트 설치각에 따른 절삭저항의 변화
설치각에 따른 절삭저항의 변화량은 미소하하여
가공물의 형상등 작업자가 필요한 설치각으로
선행 하여도 좋은 것으로 사료된다.

2) 절삭속도에 따라 설치각이 절삭저항에 미치는 영향
구성인선 임계속도는 설치각과 무관하게 120
m/min이며, 이송분력의 크기는 설치각에 따라
주분력과 배분력의 역순으로 나타난다.
3) 절삭길이에 따라 설치각이 절삭저항에 미치는 영향
절삭길이가 증가하면 절삭저항 3분력은 모두
증가하며, 설치각의 영향은 주분력<이송분력
<배분력 순이며, 그 영향은 미소한 것으로 해석
된다.

4) 이송에 따라 설치각이 절삭저항에 미치는 영향
이송에 따라 설치각이 절삭저항에 미치는 영향은
주분력<이송분력<배분력 순이며, 영향은
미소하다.

참고문헌
1. F. W. Taylor, "On the Art of Cutting
Metals", ASME, p. 28, 1907.
2. M. E. Merchant "Mechanics of the Metal
cutting Process", Journal of Applied
3. M. Kronenberg, "Machining Science and
Application", Pergamon Press, pp. 235~
386. 1966.
4. J. N. Greenhow, "Orthogonal Cutting with
5. E. G. Lowen, M. C. Shaw, "On the
Ananysis of Cutting Tool Temperature",
6. 서 남섭: 금속절삭이론, 동명사, pp. 52~89.
1994.
7. 염 영하: 공작기계의 절삭이론, 동명사,
8. 염 영하: 신전공작기계, 동명사,
9. 서 남섭: 신전 기계공작법, 동명사 pp. 659
~661. 1996.