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Abstract

In this study, we tried to test the classification performance of a neural network and thereby to examine its 

applicability to the signals distorted by a shallow water environment. We conducted an acoustic experiment in 

a shallow sea near Pohang, Korea in which water depth is about 60 m. The signals, on which the network has 

been tested, is linear frequency modulated ones centered on one of the frequencies, 200, 400, 600 and 800 

Hz, each being swept up or down with bandwidth 100 Hz. We considered two transforms, STFT (short-time 

Fourier transform) and PWVD (pseudo Wigner-Ville distribution), from which power spectra were derived. The 

training signals were simulated using an acoustic model based on the F(시rie「synthesis scheme. When the 

network has been trained on the measured signals of center frequency 600 Hz, it gave a little better results 

than that trained on the simulated. With the center frequencies varied, the overall performance reached over 

90 % except one case of center frequency 800 Hz. With the feature extraction techniques (STFT and PWVD) 

varied, the network showed performance comparable to each other. In conclusion, the signals which have 

been simulated with water depth were successfully applied to training a neural network, and the trained 

network performed well in classifying the signals distorted by a surrounding environment and corrupted by 

noise.

I. Introduction

Based on the presence or absence of features, 

the sonar operator attempts to determine the 

identity of the target. This classification task has 

important military consequences because passive 

sonar enables covert detection of unfriendly 

vessels. However, the task is difficult to perform 

requiring lengthy and often intensive training. As 

sensor technology develops and target becomes 

increasingly sophisticated, this task is becoming 

more and more difficult due to increasing volume 

and complexity of the data available for 

processing. These have led to the urgent need for 

increased computer assistance.

As the demand increases to address even 

more complex problems, such as pattern 

recognition, the limitations of conventional 

approaches are becoming increasingly 

pronounced. It is in this area that neural networks 

promise a significant breakthrough [1].
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This paper is direct은d to test the performance 

of a neural network based classifier on the 

distorted signals in a shallow water. The network 

is trained on the signals simulated at 2 km using 

a time-domain acoustic model. The experiment 

has been conducted with a sound source emitting 

four LFM signals, and three receivers 

transmitting signals to land site via radio 

frequency.

The network performance is delivered in 

relation to four LFM signals, two feature 

extraction techniques, and training data sets.

II. Spectrum Estimation for Non-Stationary 

Signals

2.1. Short-Time Fourier Transform (STFT)

As feature vectors for the network, we employ 

spectrograms, i.e., spectrum distribution with time 

and frequency. The spectrograms have been 

especially important for speech processing and 

for signal processing [2-5]. To obtain 

spectrograms, we consider two transforms: short- 

time Fowl은「transform (STFT) and pseudo 

Wigner-Ville distribution (PWVD).

The most direct approach to computing the 

time history of the power spectrum is to view the 

recorded data through a moving 取erage window 

whose length corresponds to the time over which 

the data can be assumed to remain stationary. 

The Fourier transform of the windowed data is 

known as the STFT. The STFT of the given data 

is defined as [6]

X[nXx[k]w[n ~ k]e^^ , (1)

where w[k] extends from n-L to n+L. The power 

spectral estimate is given by the short time 

periodogram

Px[n.(o]^ —'——. (2)
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The time history of the spectrum comprises the 

so called spectrogram (or lofargram in sonar 

signal processing).

2.2. Pseudo Wigner-Ville Distribution (PWVD)

This is a kind of time-frequency distributions 

and is known to be suitable for analyzing 

transient or other non-stationary phenomena. It 

has been widely used in optics [7] and speech 

processing [8].

The Wigner-Ville distribution (WVD) is defined 

as [9]

以(3)二伫°s*(7-Ws。+与卯气 ⑶
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and discrete form as [10]
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For a sampled signal s[n] (n=0,1,2,...,N-1), Eq. 

(4) changes into
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k=0f1,2,...N-1 (5)

where s[m]=0 for m<0 and m그.

Basically, Eq.(5) has the form of the FFT and 

we can utilize a FFT algorithm. However, it has a 

N/2 period so that even when the sampled data 

satisfies the Nyquist criterion, there would be still 

biasing component in the WVD [10], A simple 

way to a니oid the 히iasing is to introduce the 

analytic signal beforehand [11].

Since the WVD has a N/2 period, we can 

rewrite Eq.(5) as follows
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where 腿=兀/(2/VAf) and A/is the sampling 

interval. In Eq.(6), the frequency resolution m is 

1/4 of the ordinary FFT, implying that the WDF 

guarantees four times of frequency res이니tion.

To suppress the interference arising from 

cross terms, we apply a sliding window in time

frequency domain. The WDF, with the window 

included, is usually called the PWVD or 

smoothed VWD. We obtain the PWVD by 

convolving the VWD and Gaussian window 

function.

III. Sea Experiment

Figure 1 shows the locations of the sound 

source and receivers. We used one sound source 

and three receivers. The sound source projected 

four LFM signals centered on 200, 400, 500 and 

800 Hz with bandwidth 100 Hz. The signals were 

swept up for one second and down for an another

DRR : drifting recerver
BMR bottom moored receiver
CTD : conductivity, temperature and depth

Fig.1. Station map of the acoustic experiment. 

second. That is, they were repeated to produce 

the class A (swept up) and B (swept down) 

signals every two seconds. To check the quality 

of the projected signals, we installed a 

hydrophone at 1 m away from the source and 

monitored the signals. The source was operated 

on the water depths of 10 and 30 m.

We also deployed a CTD (conductivity, 

temperature and depth) equipment to get 

oceanographic data for resolving water conditions. 

A few days before the experiment, there was 

north-westerly strong enough to mix the whole 

water column.

We used two kinds of receivers, the sonobuoy 

AN/SSQ-57A (DRR1.2) and sonobuoy AN/SSQ- 

57B (BMR). 자latter was modified so that it 

could separate received signals into the north

south and east-west components. Two sonobuoys 

(DRR1,2) were connected each other by a 100 m- 

long rope and allowed to drift in water keeping 

water depth of about 18 m. However, they were 

again connected to the weight on the sea bottom 

via the rope so that they could drift just in a 

limited area. The modified receiver (BMR) was 

installed on the sea bottom in which depth is 

around 60 m.

The bottom of the experiment area consists of 

sand-silt-clay. Its typical geoacoustic parameters 
are characterized by density 1600 kg/m3, porosity

67.2 %, sound speed 1510 m/s, and attenuation 

coefficient 0.5dB/Z[12].

The profile shows typical pattern of very well 

mixed water, remaining almost same velocity 

from the surface to the bottom. This pattern was 

caused by the strong north-westerly a few days 

ago.

Figure 2 presents an example of the PWVD of 
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the signals monitored at 1 m away from the 

source. In this case, the signal was swept down 

(class B). It was to check the quality of the 

projected signal with time. In the figure, the 

frequency and time axes span 256 bins, 

representing 1024 Hz and 1 second, respectively. 

Each LFM signal has bandwidth 100 Hz. Among
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Fig.2. Spectrogram example via the PWVD on 

the class B signal monitored at 1 m away 

from the so니「ce.

the four LFM signals, the one of center frequency 

600 H乙 is the most intensive (i.e., SNR is the 

highest). Even in a 1-second period, we can see 

that there exists intensity variation with time, 

particularly in the fourth LFM signal, center 

frequency being 800 Hz.

An example of the received signal at 5.4 km 

away from the source (Fig.3) shows that there are

Fig.3. Spectmgiwm example via the PWVD on the 

meas니「ed signal (class A).

obvious four LFM signals. In this example, the 

signal was swept up (이ass A). As shown in the 

monitored signal, the third LFM signal has the 

strongest intensity. The frequency and time axes 

correspond to 1024 Hz and 1 second, respectively. 

It is via the PWVD on the signals at depth 60 m.

IV. Neural Network Training

In performing the STFT, we use 256 points of 

data with Hamming window and 64 points overlap. 

This transformation gives 128 f「e이uency bins and 

15 time frames. Among 128 frequency bins, 15 

fee이uency bins are shared for each LFM signal. 

That is, each LFM signal (class A or B) spans for 

15 frequency bins. Hence, the network needs 225 

input neurons (15 bins x 15 frames) for each 

signal. Meanwhile, the PWVD presents 128x128 

spectrum data in time-frequency domain where 

each LFM signal spans for 15 frequency bins. We 

select time frame in every 8-step interval so that 

the network needs 240 input neurons for each 

LFM signal.

We choose the network of three layers; input, 

hidden and output. The number of neuron in the 

hidden layer is set to 19.

To prepare the training data set for the network, 

we simulate time signals at range 2 km. We take 

the sound speeds in water to be constant value of 

1482 m/s and other input parameters to be typical 

values of sand-silt-clay bottom. The LFM signal is 

swept up or down with bandwidth 100 Hz and 

center frequency 800 너乙 Time signals are 

simulated such that they give 2048 points per one 

second.

The way how to train the network is shown 

in Fig.4. At each receiver depth, we obtain one 

input data set representing the characteristics of
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the class A or B signal. The STFT and PWVD 

require 225 and 240 input neurons, respectively. 

The spectrum data are norm에zed illative to the 

maximum value and converted to one 

dimensional data, x[k] (k그 12 ,NT*NF), where 

NT and NF are the numbers of time frame and

Class B

frequency bin, respectively.

One DimensionaHzed 
Input Data

x(k]. k=1.2... NT*NF

Fig.4. Preparing procedure of the training data.

Figure 5 shows the training data sets. They are 

obtained by applying the PWVD over the 

simulated signals at range 2 km. The water depth 

is 60 m and the model gives time signals at each 

0.5 m so that 120 spectrograms come out. The 

two training data sets give obviously different 

patterns with depth celt. As the training data 

represent more varieties of the target data, the 

network would be able to perform better on the 

test data. In this sense, the two spectra examples 

may be good training data sets because they have

(a) 시ass A (swept up)

rpu Neuron

(b) 시ass B (swept down)

Fig. 5. Power spectra examples for the network 

training.

variable but almost independent spectra with time 

and input neuron. In training the network, we 

introduce the minimum-seeking algorithm, 

annealing plus conjugate gradients [13]. It 

combines the global search strategy of simulated 

annealing with the powerful conjugate gradient 

algorithm. Typically, the network converges to the 

minimum within three steps where the allowa비e 

error is 0.0005.

V. Network Performance on Measured Signals

5.1. Variation of Feature Extraction Technique

Table 1 gives the performance comparisons from 

the two feature vectors: spectra distributions by 

the STFT and PWVD. The network has been 

trained on the simulated signals. The table shows 

that the two transforms guarantee almost same 

performance on an average. On the class A signal 

the PWVD is superior to the STFT and on the 

class B signal vice versa. Examining each 

performance, we can see that the network can 

classify nearly 90 % or more of the received 

signals except for the class A signals of center 

frequency 800 Hz in case II and III.
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Ta비e 1. Network performance (%) with the

feature extraction techni이니es varied.

Receiver Center

Case (SD, m) Freq. STFT PWVD

(Hz)

200 *100/100 100/100

I BMR 400 100/100 100/100

(30) 600 100/100 100/100

800 93.8/100 100.97.9

200 100/100 100/100

II DRR1 400 100/100 100/100

(30) 600 100/100 100/100

800 59.7/92.5 649/93.3

200 100/100 100/100

III DRR2 400 98.5/100 100/100

(30) 600 100/100 100/100

800 60.4/91.8 65.7/90.3

IV 200 100/100 100/99.3

BMR 400 92.5/100 100/100

(10) 600 100/100 100/100

800 89.2/100 100/100

Avg. 93.4/99.0 95.7/98.8

(*) class A / class B

As a whole, the network performance by the 

two transforms (STFT and PWVD) present similar 

trends and are very comparable to each other on 

an average.

5.2 Variation of Training Data Set

We examine the network performance when 

the training data sets are changed from the 

simulated signals to the measured. We restrict our 

discussion to the results via the PWVD. As can be 

se이1 in the PWVD of the signals monitored at 1 m 

of the source (Fig.2), the signal centered on 600 

Hz has the highest SNR. 니ence, we select the 

PWVD from the measured signal of center 

frequency 600 Hz in case I as the training data set.

Table 2 summarizes the network performance 

with training data sets varied from the sim니ated 

data to the measured. In some cases, the network 

performs worse on the simulated training data (for 

example, 800 너z in case II and III). However, the 

network shows better or comparable performance 

on the average for other cases, promising the 

applicability of the network trained on the 

simulated data. The network, trained on the 

measured signals, gives slightly better results than 

that on the simulated, the improvement being 

1.40 % and 0.64 % for the class A and B signals, 

respectively.

training data sets varied.

Table 2. Network Performance with the

Case

Receiver

(SD, m)

Center 

Freq. 

(Hz)

Training Data Set

Sim 니 ated Measured

200 *100/100 100/100

I BMR 400 100/100 100/100

(30) 600 100/100 100/100

800 100/97.9 97.3/100

200 100/100 100/100

II DRR1 400 100/100 100/100

(30) 600 100/100 100/100

800 64.9/93.3 85.1/95.5

200 100/100 100/100

III DRR2 400 100/100 100/100

(30) 600 100/100 100/100

800 65.7/90.3 84.3/96.3

IV 200 100/99.3 93.8/99,3

BMR 400 100/100 93.2/100

(10) 600 100/100 100/100

800 100/100 100/100

Avg. 95.7/98.8 97.1/99.4

(*) class A / 이ass B
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5.3. Variation of Center Frequency

We present the network performance when 

center frequencies are varied from 200 to 800 Hz. 

Table 3 summarizes the performance with center 

frequencies varied on the simulated and 

measured signals. The overall performance 

reaches over 90 % in all cases except the case of 

center frequency 800 Hz and 이ass A where it is

87.2 %. Among the four center frequencies, the 

signals centered on 600 Hz are classified perfectly. 

When we have trained the network on the 

measured data, we chose the signals of center 

frequency 600 Hz. Thus, the network performance 

on the measured data of 600 Hz is actually 

verified results on the training sets. This perfect 

outputs may be also anticipated from the 

monitored signals in Fig.2 where the SNR is the 

highest on 600 니之 and the lowest on 800 Hz. The 

sound source was operated to have source levels 

of maximum 168 dB on 200 Hz and minimum 150 

dB on 800 Hz [14], but the SNR is the highest on 

600 Hz.

Ta비e 3. Network performance (%) with the center 

frequencies varied.

(*) class A / 시ass B

S : simulated. M : measured

Case

Center Freq. (Hz)

200 400 600 800

KS) •100/100 100/100 100/100 100/97.9

H (S) 100/100 100/100 100/100 64.9/93.3

III (S) 100/100 100/100 100/100 65.7/90.3

IV (S) 100/99.3 100/100 100/100 100/100

i(M) 100/100 100/100 100/100 97.3/100

II (M) 100/100 100/100 100/100 85.1/95.5

III (M) 100/100 100/100 100/100 84.3/96.3

IV (M) 93.8/99.3 93.2/199 100/100 100/100

Avg. 99.2/99.8 99.2/100 100/100 87.2/96.7

Anyway, even though the network is trained on 

the signal on a particular f「eq나ency (800 너z on 

the simulated data and 600 버z on the measured), 

it performs well over signals on other frequencies.

5.4. Variation of Receiver Depth

We conducted the acoustic experiment at two 

receiver depths where the receivers were three. 

One of them was installed on the sea bottom 

(BMR i.e., case I) and the other two (DRR1,2, i.e., 

case II, III) were allowed to drift around the 

installed location keeping their depths to be 18 m.

In Table 3, we can see that the network 

performs better in case I than in case II and III 

(particularly on the class A signals of 800 Hz) 

irrespective of the training data types (sim비ated 

or measured). However, the average performance 

is over 90 % in all receivers.

5.5. Variation of Source Depth

We changed source depths during the 

experiment between 10 and 30 m, and in each 

depth we operated the sound source for more than 

15 minutes.

As can be examined in Ta버e 3, the network 

performs over 90 % in all cases except for the two 

cases (800 너z in case II and III). When we 

compare the case I and IV, where the signals were 

received through same but source depth 

was changed, we can see that the network shows 

no significant change in performance on the 

average. That is, when the network is trained on 

the simulated signals, the performance is 100 and 

99.5 % for source depth 30 m (case I), but it is 

100 and 99.8 % for 10 m (case IV). In the network 

trained on the measured signals (case I vs. IV), 
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we can obtain a little better performance for 

source depth 30 m which reaches 니p to 

99.3/100 % (class A/class B) compared with 

96.8/99.8 % f아'source depth 10 m.

VI. Con시usion

We tried to test the classification performance 

of a neural network and thereby to examine its 

applicability to the measured signals tn a shallow 

water environment. The training signals were 

simulated using a time-domain acoustic model.

Once the network has been trained, it 

classified over 90 % of the measured signals on 

the average. In con시usion, the sign기s, which 

have been sim니ated through an acoustic model, 

were successfully applied to training a network 

and the trained network performed good enough 

in classifying the measured signals.
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