ABSTRACT

Recently, It is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic Signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of Ultrasonic distance resolution in the opaque materials. Provides useful information that cannot be obtained by a conventional measuring system. In the present research, considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic Signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness, sound velocity, and step height, regardless of interference phenomenon. Numerical information was deduced and quantified effective information from the image. Also, pattern recognition of a defected input image was performed by neural network algorithm. Input pattern of various numeral was composed combinationally, and then, it was studied by neural network. Furthermore, possibility of pattern recognition was confirmed on artificial defected input data formed by simulation. Finally, application on unknown input pattern was also examined.

1. 서론

현재 반도체, 양산의 방향은 성능면에 있어서는 고집적화, 고속화를 요구하고 있다. 이러한 패키지(package)는 인체 최고 기관에 납땜하여 접합하기 위해서는 패키지의 몸체의 온도는 200°C 이상의 되는데, 이때 패키지 내부의 수분 및 그 밖의 다른 요인들에 의해 박리(delamination), 균열(crack), 기포(void) 형상과 같은 반도체의 성능에 치명적인 영향을 주는 결함들이 발생하게 된다. 이러한 결함들을 가장 효과적으로 검출할 수 있는 방법은 초음파를 이용한 비파괴 검사법으로 알려져 있으며, 그 결과와 같이 상당한 신뢰성과 정확성이 있다고 할 수 있다. 인공지능 자동화 검사법에 필요한 알고리즘을 도출하고 화상처리를 통하여 반도체결함을 합리적으로 검출하고자 하며 비지의 입력패턴에서의 활용 가능성을 조사하여 그 응용성의 확성에 기여하고자 한다. 반도체 패키지의 각 결합 계면에서의 결합층의 결합층을 개발하여リアルタイム(real time)에 의한 자동검출 시스템 구축이 가능하며 생산성 향상에 본 연구의 목표로 한다.

* 조선대학교 공과대학 기계공학부 교수
** 조선대학교 경영기계공학과 대학원
2. 관련이론

2.1 푸리에 변환

2.1.1 PFT(Fast Fourier Transform)

푸리에 변환(FFT)은 시간영역의 신호를 주파수영역으로 해석하기 위해 푸리에 적분을 이용하여 변환한다. 푸리에 급수는 주기적인 신호에만 적합하며 실제에 있어서는 비주기적인 신호를 다룰 때가 많으므로 비주기적인 신호를 푸리에 변환을 이용하여 주파수 영역에서 해석하게 된다. 푸리에 변환은

\[X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \quad \text{for} \quad -\infty < t < \infty \quad (1) \]

로 정의되며 이것은 역푸리에 변환은 다음과 같이 표현된다.

\[x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \quad \text{for} \quad -\infty < \omega < \infty \quad (2) \]

이 시간함수를 푸리에 변환하게 되면 아래와 같이 실수부와 허수부로 나누어 스펙트럼에서나 크기로 나타난다.

\[X(\omega) = X_R(\omega) + jX_I(\omega) \]

\[X_R(\omega) = \int_{-\infty}^{\infty} x(t) \cos \omega t dt \quad (3) \]

\[X_I(\omega) = \int_{-\infty}^{\infty} x(t) \sin \omega t dt \]

2.1.2 DFT(Discrete Fourier Transform)

DFT란 이산신호에 대해서나 유한한 시간에 걸쳐 수집한 N개의 데이터에 대한 푸리에 변환을 말한다. 각중 계측기나 해석기기는 실제 신호를 이산화하여 디지털 신호로 만든 다음 처리하게 된다.

표본간격 \(T \)를 가지는 DFT는

\[F(\omega) = \sum_{n=-\infty}^{\infty} f(nT)e^{-j2\pi n\omega T} \]

\[= \sum_{n=-N/2}^{N/2} f(nT)e^{-j2\pi n\omega T} \quad (4) \]

이으며 푸리에 변환과 같이 \(f(t) \)가 표본점들에서 추출되면 \(F(\omega) \)는 실수이며 \(f(t) \)가 표본점들에서 기름지으면 \(F(\omega) \)는 허수이다. \(F(\omega) \)와 \(F(-\omega) \)는 공역축소신인 특성을 가지고 있으며 \(F(\omega) \)는 주기 \(\frac{2\pi}{T} \)로 주파수에 대한 주기적이다. DFT의 실제적인 계산은 유한의 합을 수행하여야 함으로 유한한 이산 신호 \(x_k \)에 대하여 다음과 같이 표현된다.

\[X_m = \frac{1}{N} \sum_{k=0}^{N/2} x_k e^{-j2\pi mk/N} \quad m = 0, 1, \ldots, N/2 \]

단 \(k \)는 샘플링한 시간데이터의 갯수를 의미한다.

2.2 신경회로망 알고리즘

본 연구의 주안점은 S.A.T 장비에서 인터페이스 되어지는 화상입력값을 해상처리 하는 부분에서 신경회로망 학습 알고리즘을 통과하면서 최적의 합판 판단을 내려가는데 있다. Fig.1는 입력 페달의 학습을 위한 신경회로망 프로그램의 순서도이다.

Fig.1 Flowchart of neural network learning.

(1) 시작 : 신경회로망학습의 초기조건을 결정하는 부분이다.
(2) 연결강도 및 오프셋의 초기화 : 신경회로망의 상태를 결정하는 연결강도 \(W_{ji} \), \(W_{kj} \)와 오프셋 \(\theta_j \), \(\theta_k \)를 각각 -0.5부터 0.5사이의 작은 값으로 초기화한다.
(3) 학습패턴의 결정 : 주어진 학습패턴의 형태를 재현하고 학습자료 그룹의 규모를 확인하여 프
프로그램 1회 학습의 반도를 결정한다.
(4) 은닉층 유니트 계산: 신경회로망 입력층의 뉴런을 연결강도 W_i와 오프셋 θ_i로 계산하여 은닉층 유니트를 계산한다.
(5) 출력층 유니트 계산: 은닉층의 뉴런을 연결강도 W_k와 오프셋 θ_k로 계산하여 출력층 유니트를 계산한다.
(6) 출력층에서의 오차 계산: 학습패턴의 목표 출력값과 실제 출력값의 차로부터 출력층 유니트에 연결된 연결강도의 출력층 유니트의 오프셋에 대한 오차를 구한다.
(7) 은닉층에서의 오차 계산: 출력층유니트에서 구해진 오차와 은닉층과 출력층간의 연결강도 및 은닉층의 출력으로부터 은닉층유니트에 연결된 연결강도와 오프셋에 대한 오차를 구한다.
(8) 은닉층과 출력층 사이의 연결강도 변경: 출력층 유니트에서의 오차와 은닉층 유니트의 출력 및 학습율과의 곱을 더하여 은닉층 유니트와 출력층 유니트에 연결된 연결강도를 수정한다.
(9) 출력층 유니트의 오프셋 변경: 출력층 유니트에서의 오차와 모델링과의 곱을 더하여 출력층 유니트의 오프셋을 수정한다.
(10) 입력층과 은닉층 사이의 연결강도 변경: 은닉층 유니트에서의 오차와 입력층 유니트의 출력 및 학습율과의 곱을 더하여 입력층 유니트와 은닉층 유니트에 연결된 연결강도를 수정한다.
(11) 은닉층 유니트의 오프셋 변경: 은닉층 유니트에서의 오차와 모델링과의 곱을 더하여 은닉층 유니트의 오프셋을 수정한다.
(12) 학습패턴의 증가: 다음 학습자료를 반복한다.
(13) 학습반복의 종료: 목표에 도달하면 학습을 종료한다. 연구에서는 목표 출력과 계산 출력의 오차나 학습횟수를 이용하여 학습을 종료한다.
(14) 파라메터 저장: 학습 종료시의 최종적인 파라메터를 저장한다.

3. 실험장치 및 실험결과

3.1. 실험장치

본 연구에서 사용한 S.A.T 검사 시스템은 히타치(HITACHI)사의 3축 스캐너를 사용하였고, 변환기는 초점 거리가 15mm이고 주파수는 25MHz를 사용하여 측정하였다. 아래 Fig.2은 본 실험에 사용된 S.A.T장비의 전체적인 시스템 구성도를 나타낸다.

Fig.2 S.A.T system 실험사진

- pulser: 초음파를 송신하기 위해서 초음파센서 (probe)에 전압을 인가하는 unit이다.
- receiver: 초음파센서는 초음파를 송신한 후 피검제의 표면 및 지면으로부터 반사되어오는 모든 초음파를 수신하여, 그 강도에 따라 전압을 발생한다. 이 반사 echo는 대단히 미약하기 때문에 중독하는 unit이다.
- scanner: 피검제를 올리놓은 수조와 X, Y, Z축의 구동모터와 그것을 control하는 전자장치이다.
- data처리장치(컴퓨터, 모니터, 프린터 등): 초음파 unit들로부터 받은 data를 소프트웨어적으로 처리하여 화상으로 나타내주거나, X, Y, Z축 구동모터를 움직인다.

3.2. 초음파를 이용한 해석과 측정원리

- BGA(Micro Ball Grid Array)의 표면의 화상

Fig.3 반도체 패키지의 Molding 불량
균열(silicon chip crack), 기울어짐(tilt), 기포(void) 등이 있다. Fig.6은 본 실험의 대상 생물을 나타내고 있다.

![Fig.6 The sort of inspectable badness](image)

3.3.1 박리(Delamination)

박리(Delamination)은 성형된 물질의 들뜸형태(剝離)를 뜻한다. (Fig.7)

![Fig.7 Delamination (phase inversion)](image)

3.3.2 Popcorn Cracks

Crack은 다이(Die)의 방열에 수직으로 깨지는 현상을 말한다. (Fig.8)

![Fig.8 Popcorn crack (B-Scan image)](image)

3.3.3 다이 기울어짐(Die Tilt)

다이 기울어짐(Die tilt)은 Fig.9와 같이 Die가 경사지게 되는 현상이다.

![Fig.9 Die tilt (B-Scan image)](image)
3.3.4 다이 접착 기포 (Die Attach Voids)

Die Voids는 Fig.10과 같이 접착중에 접합면에 수분이나 공기가 함유되어 있을 때 나타나는 현상을 말한다.

Fig.10 Die attach voids

Fig.12 Absolute Display

- Depth : Time of Flight라고 하며 파가 되돌아오는 시간에 따라 명암을 표시한다. 즉 파가 돌아오는 것은 받게 나타나고 늦게 돌아오는 것은 늦게 나타난다. 그러므로 Die Top은 Die Pad보다 돌아오는 시간이 빨라 받게 나타난다.(Fig.13)

Fig.13 Depth Display

- PCM(Polarity Compare Method) : 극성을 비교하여 (-)파형을 받게 나타낸다.(Fig.14)

Fig.14 PCM(Polarity Compare Method) Display

4. 실험결과 및 고찰

Scan Area의 모양, Scan Area Size, 해상도, Scan 후 화상의 밝기, 색상 변천대의 높이, 측정점의 높이, Z-Axis의 높이등의 조건을 설정한다.

4.1 화상(Image) Display 종류
- Standard : 파형의 (-)부분만을 data로 간주함에 따라 (-)부분의 echo의 세기로 명암을 표시한다.(Fig.11)

Fig.11 Standard Display

- Absolute : 파형의 (+),(-)를 전부 data로 받아 들여 전체 echo의 세기로 명암을 표시함에 따라 echo가 큰 것은 받게 나타나고 작은것을수록 늦게 나타난다.(Fig.12)

4.2 화상처리 순서도(Flowchart)

본 연구에서는 화상처리에서 다른 이론을 바탕으로 아래 그림 Fig.15의 순서로 차례로 입력화상을 처리하였는데, 먼저 히스토그램을 작성하고 임계값을 정한후 명도(Bright)와 척도(Contra
5. 결론

기계 전자부품이나 반도체의 다층박막 (Multi-Layer) 구조 모델에 대한 초음파검사의 적용으로 접합기관의 결합검출에 관한 연구 결과는 다음과 같다.
1) 반도체 검사법에 의하여 박리(Delamination), 다이 균열(Die Crack), 기포(Void)의 유무를 확인 할 수 있었다.
2) S.A.T로 입력된 화상을 결합을 판별할 수 있는 데이터로 변환하는 과정에서 보다 정확한 결과를 도출하기 위한 수단으로 먼저 화상으로부터 속차정보를 추출하고 유용한 정보를 정량화 하였 다. 이때 손상된 입력화상은 신경회로망 알고리즘을 적용하여 패턴인식을 하고자 하여 각종 속자의 입력패턴을 복합적으로 구성하고 신경회로 맵을 이용하여 학습시킨 후 시뮬레이션을 통하여 형성된 모의 손상입력에 대한 패턴인식 가능성을 확인하였다.
3) 반도체 결합층을 알고리즘 개발로 반도체 결합검사 자동화의 기술은 마련하였고, 현재 개발 중인 다양한 반도체를 포함한 기계 전자부품 회기별 데이터베이스 구축한다면, 온라인상태 에서 보다 많은 검사를 수행할 수 있는 인공지능형 자동검사 시스템 구현이 가능하다고 본다.

후 기 본 연구는 1999년도 과기부와 한국과학재단 지원 인 조선대학교 수송기계 부품 공정자동화연구센터의 지원에 의해 연구되었음

6. 참고문헌

1) 김재열, “초음파를 이용한 반도체 페키지의 경 소결합검출을 위한 화상처리에 관한 연구”, 한양대학교 대학원 박사학위논문, 1990

-590-