항공영상을 이용한 항법변수 추출 알고리듬의
실시간 구현

박인준*, 신상윤*, 정동욱*, 김관석*, 오영식*, 이민규*, 김인철**, 박태홍*, 이상욱***

*서강대학교 전자공학과
**서울상립대학교 전자전기공학부
***서울대학교 전기공학부

Real-Time Implementation of the Navigation Parameter Extraction from the Aerial Image Sequence

*Dept. of Electronic Eng., Sogang Univ.
**School of Electrical Eng., Univ. of Seoul
***School of Electrical Eng., Seoul National Univ.

pj@eevision1.sogang.ac.kr, ssy@eevision1.sogang.ac.kr, jdw@eevision1.sogang.ac.kr,
kks@eevision1.sogang.ac.kr, oys@eevision1.sogang.ac.kr, lmg@eevision1.sogang.ac.kr,
rin@uoscc.uos.ac.kr, rhpark@ccs.sogang.ac.kr, sanguk@sting.seoul.ac.kr

요 약

본 논문에서는 영상 항법 변수 추출 알고리듬의 실시간 구현에 관해 연구되었다. 영상 항법 변수 추출 알고리듬은 이미지를 기준으로 현재 위치를 추정하려는 상대위치 추정 알고리듬과 상대위치 추정에 의해 누적되는 오차를 보정하기 위한 영상항법 알고리듬으로 구성된다. 영상항법 알고리듬은 고해상도 영상의 IRS (Indian Remote Sensing) 위성영상 기준영상으로 이용하는 방법 및 DEM (Digital Elevation Model)을 이용하는 방법으로 구성된다.

하이브리드 영상 항법 변수 추출 알고리듬의 실시간 구현하기 위해 MVP (Multimedia Video Processor)로 명명된 TMS320C80 DSP (Digital Signal Processor)를 사용하였다. 구현된 시스템은 MVP의 부분소수점 프로세서인 MP (Master Processor)를 고정소수점 프로세서인 PP (Parallel Processor)를 제어하거나 상각함수 계산과 같은 부동소수점 함수를 계산하는데 사용하였고, 대부분의 연산은 PP를 사용하여 수행하였다. 처리시간이 짧아 필요한 모델에 대해서는 고속 알고리듬을 개발하였으며, 4개의 PP를 효율적으로 사용하기 위한 영상분할 방법에 대해 제안하였다.

비행체에서 캠프터리를 이용해 영상항법 알고리듬 알고리즘의 제어방법을 실시간 시뮬레이션하였다. 실험결과는 하이브리드 영상 항법 변수 추출 알고리듬의 실시간 구현이 효과적으로 구현되었음을 나타내고 있다.

1. 서 론

영상 항법 변수 추출 시스템을 비행 중에 취득한 영상 자료로부터 비행체의 항법에 관계된 비행체의 위치 및 속도 등의 정보를 포함한 항법 변수를 추출하는
것이다. 이 시스템은 연속된 항공 영상으로부터 향후
변수를 추출해내는 상태 위치 보정과 여기에서 발생하
이는 오차를 보정해 주기 위한 점
대위치 보정으로 구성된다. 본 논문에서는 상태 위치 추
정과 점대위치 보정으로 구성되는 항공 변수 시스템의
실시간 시스템 구현에 관한 연구를 하였다.

2. 영상 향후 변수 추출 시스템

 영상 향후 변수 추출 시스템은 그림 2-1과 같다. 이
것은 비행 중에 취득한 현재영상과 이전영상간의 스테
레오 정보를 이용한 상태 위치 추정 시스템과 기준영상
 혹은 DEM을 이용한 점대위치 보정 시스템으로 구성
되어 있다.

3. 상태 위치 추정 알고리듬

 상태 위치 추정은 연결적으로 임력되는 항공 영상
을 정합하고 정합점과 비행체의 자세 정보를 이용하여
항공변수를 추출하는 것으로 항공 시스템의 성능을 크
게 좌우한다. 상태 위치 추정은 현재영상에서 분산이
가장 큰 지점을 특정정보으로 보아 추출하고 현재영상 및
이전영상의 자세정보와 고도를 이용하여 추출된 특정
에 대해서만 영상정보를 수행한다. Normalized Cross
Correlation을 이용하여 현재영상에서 정합되는 위치를
파리미드방식으로 찾아낸 후 이미 구축된 DEM을 이용
하여 속도를 추출하여 현재위치를 결정한다.

4. 점대위치 보정 알고리듬

 상태 위치 추정 알고리듬에 의해 현재의 위치를 추
정해 나가면서 측정되는 오차를 보정하기 위한 방법으
로써 세 가지의 점대 위치 보정 알고리듬을 구현하였
다. 목적을 이미 비행하여 고해상도의 기준영상을
보유하고 있는 경우에 사용하는 고해상도 영상을 이용
한 점대 위치 보정 알고리듬의 고해상도 기준영상을 보
유하고 있지 않은 경우에 사용하는 위성영상의 이용은
점대 위치 보정 알고리듬, 마지막으로 영상의 특징점이
없으면 산업지형에 대한 보정을 위해 DEM을 이용
한 점대 위치 보정 알고리듬이다.

5. MVP를 이용한 실시간 구현

 본 결과에서는 영상 향후 시스템을 실시간 구현하기
위한 방법에 대하여 설명한다. 실시간 영상 향후 추출
시스템은 [2],[3]에서 소개한 바와 마찬가지로 모든 연
산이 FP에서 효과적으로 수행될 수 있어야 하므로, 입력
데이터의 크기를 최소하여 고정 소수점 연산에 의한
영향이 최소화 되도록 계산 정밀도를 조정하였다. 상태
위치 추정 및 점대 위치 보정은 실시간으로 구현하기
위한 영상분할 및 고속 알고리듬을 사용하였다.

5.1 MVP 시스템 소개

 본 논문에서 사용하는 TMS32C80 MVP는 하나의
칩에 1개의 MP(Master Processor)와 4개의 PP
(Parallel Processor) 등 5개의 프로세서가 결합된 것
으로, 이 점에서는 2KB 단위의 50KB on-chip RAM이 있
는데 이들은 cross-bar switch를 통해 5개의 프로세서에
독립적으로 연결될 수 있어, 다양한 병렬 처리 알고
리듬을 수행할 수 있다. 이외에도 릴레이 및 외부 메모
리간의 데이터 교환을 담당하는 하드웨어 포트(TC
(Transfer Controller), 그리고 비디오 인터페이스를 담
당하는 VC(Video Controller)가 있어 멀티미디어 송수
송 프로그램에 적합한 기능을 제공한다.[5]

 본 논문에서는 IBM 호환 PC에 PCI bus로 결속한
보드에 40MHz의 MVP을 탑재한 모듈을 사용하였으며,
이 모듈의 설정은 표 1에 제시하였다.

5.2 실시간 구현 방법

 TMS32C80 DSP 보드에서 고속 병렬처리를 위해
사는 제한된 메모리를 잘 분할하여 사용하여야 하므로,
4개의 PP가 병렬로 처리할 수 있도록 영상을 분할하는
것이 가장 중요하다.

 먼저 상태 위치 추정 알고리듬을 고속으로 구현하
기 위해 특정점 추출 과정에서 sliding window 방식을

<table>
<thead>
<tr>
<th>시스템 클록</th>
<th>40MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>호스트 인터페이스</td>
<td>PCI 호스트 인터페이스</td>
</tr>
<tr>
<td>외부 메모리</td>
<td>40MBbytes DRAM</td>
</tr>
<tr>
<td>비디오 메모리</td>
<td>4MBbytes VRAM</td>
</tr>
<tr>
<td>디스플레이 입력</td>
<td>RGB</td>
</tr>
</tbody>
</table>

표 1. MVP 보드 사양.
그림 5-2. 가우시안 필터링을 위한 영상 분할

그래프 5-2. 가우시안 필터링을 위한 영상 분할

최대하였으며, 영상 보정 시 중요한 가상 방법을 이용하여 개선을 증가하였다.[3]

고해상도 영상을 이용한 절대 위치 보정에서는 가상 계산량이 많은 부분이 영상 정보 부분에서 피라미드 방법을 사용하고, Haarstedt distance를 효율적으로 계산하기 위해 DT map을 사용하여 계산량을 감소하였 다.[3]

위성영상 이용한 절대 위치 보정에서는 계산량 감소보다는 PP 4개를 효율적으로 사용하기 위한 영상 분할에 더욱 주목을 두었다. Edge detection을 위해 Canny edge detector를 사용하였으므로 강조를 제거하기 위해 Gaussian smoothing을 수행하였다. Gaussian filtering을 separable하게 구현하였는데, 320×240 영상을 4개의 PP에서 병렬로 smoothing 하기 위해 그림 5-2의 (a)에서와 같이 분할하였으며, 이를 그림 5-2의 (b)에서와 같이 세로방향으로 PT한 후 다시 (c)에서와 같이 분할하여 구현함으로써 효율적으로 PP의 내부 메모리 사용하였다.

영상보정의 경우, 320×240의 입력영상의 기준영상과 위성영상의 해상도에 맞춰 보정을 해주기 위해 미리 그림 5-3의 (a)의 중심점 \((C_x, C_y)\)를 비전하여 그림 5-3의 (b)에 있는 \((C_x, C_y)\)를 계산한 후 보정된 후의 영상보정을 고려하여 그 결과 중심으로 100×100에 해당하는 부분만에 대해서만 변환을 해주므로 계산량을 줄일 수 있다. 그림 5-3의 (c)에서와 같이 4개의 PP로 영상분할 한 후, 사용할 수 있는 내부 메모리 크기를 고려하여 다시 1개의 PP로 25개의 영역으로 분할하여 보정을 실시하였다. 왜냐하면, 1개의 PP가 사용할 수 있는 내부 메모리 크기가 100×100에 해당하는 부분만을 보정하므로, 1개의 PP가 100×100의 영역을 보정할 수 있다. 이는 내부 메모리 사용량을 크게 줄일 수 있는 방법이다.

6. 실험결과

본 설에서는 MVP 보드상의 상대 위치 추정 수행시간 및 절대 위치 보정 수행시간에 대해 내부 메모리 를 사용하여 4개의 PP를 이용하여 병렬처리를 한 경우와 1개의 PP만을 사용한 경우에 대해 비교하였다.

표 2는 상대위치 추정 알고리듬을 Workstation에서 구현했을 때 1PP, 4PP로 나누어 비교하였다. 4개의 PP를 병렬로 구현하였을 경우 1개의 PP로 구현하였을 경우보다 약 3배의 성능 향상이 있음을 알 수 있다.

표 3은 고해상도 영상을 이용한 절대 위치 보정 알고리듬을 서로 다른 알고리듬을 사용하였을 경우에 대해 비교하였다. Coarse to fine 정밀도에 의한 피라미드 방식을 이용한 경합 방식이 처리시간 면에서 약 3배의 성능 향상이 있음을 알 수 있다.

표 4는 위성영상 이용한 절대 위치 보정 알고리듬을 1개의 PP를 사용하였을 경우와 4개의 PP를 병렬로 사용하였을 경우에 대해 비교하였다. 이 경우 약 10배의 성능 향상이 보였는데, 이는 1PP의 경우 내부 메모리를 사용하지 않았을 경우와 내부 메모리를 사용한 4PP를 비교해 보는 것이었다.

표 5는 DEM을 이용한 절대 위치 보정 알고리듬을 사용한 PP 개수에 따라 비교하였다. 이는 약 24배의 성능 향상이 있음을 알 수 있다.

그림 5-1은 헬리콥터에서 찍은 영상을 입력영상으 로 하여 실시간 보정실험 한 결과이다. 위에 그려
표 2. 상대위치 처리시간 (단위: 1/1000초)

<table>
<thead>
<tr>
<th></th>
<th>W/S</th>
<th>IPP</th>
<th>4PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>특정점 추출</td>
<td>21.0</td>
<td>10.15</td>
<td>3.83</td>
</tr>
<tr>
<td>영상 보정</td>
<td>2.9</td>
<td>4.77</td>
<td>3.04</td>
</tr>
<tr>
<td>영상 정합 1단계</td>
<td>75.4</td>
<td>108.43</td>
<td>30.63</td>
</tr>
<tr>
<td>2단계</td>
<td>29.0</td>
<td>33.59</td>
<td>9.96</td>
</tr>
<tr>
<td>위치 추정</td>
<td>1.4</td>
<td>7.88</td>
<td>3.95</td>
</tr>
<tr>
<td>총 실행 시간</td>
<td>129.7</td>
<td>164.71</td>
<td>50.63</td>
</tr>
</tbody>
</table>

간 원은 결과 위치 보정을 수행하는 곳이 나타나며, H는 고해상도 영상을 I는 원영상으로 나타낸다.
그림 6-2는 추정오차를 나타낸다. 결과 위치 보정
는 결과 위치 오차가 적어졌을 때 나타난다.
표 6은 상대 위치 추정만으로 모의실험을 한 경우의 최종오차 및 평균오차와 결과 위치 보정 알고리즘을
적용하여 구현한 후의 최종오차 및 평균오차를 비교해 놓았다. 결과 위치 보정 알고리즘을 적합함으로써 약 2배의 성능 향상이 있음을 알 수 있다.

7. 결론
1. 초기에 장의 영상을 입력받는 시스템에 대해서는 상대 위치 추정 및 결과 위치 보정 알고리즘의 처리시간을 보면 실시간 영상 향庙 변수 추출이 가능하다는 것을 보였으며, 비행 모의실험을 통해 비교적 정확한 결과를 얻을 수 있었다. 추후 개발자는 비행체의 자세정보에 더욱 강화한 상대위치 추정 알고리즘에 대해 연구하는 것이다.

8. 결론의 글
본 연구는 국방과학연구소 및 서울대 자동제어특화센터 연구비 지원에 의한 연구 결과입니다.

9. 참고 문헌

표 3. 고해상도 영상을 이용한 결과 위치 보정의 처리시간 (단위: 1/1000초)

<table>
<thead>
<tr>
<th></th>
<th>Coarse to fine</th>
<th>Pyramid method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1PP</td>
<td>4PP</td>
</tr>
<tr>
<td>예비추출</td>
<td>391</td>
<td>66</td>
</tr>
<tr>
<td>영상 보정</td>
<td>730</td>
<td>54</td>
</tr>
<tr>
<td>172 map</td>
<td>872</td>
<td>254</td>
</tr>
<tr>
<td>영상정합</td>
<td>222</td>
<td>570</td>
</tr>
<tr>
<td>총 실행 시간</td>
<td>2215</td>
<td>744</td>
</tr>
</tbody>
</table>

표 4. IRS 위성 영상을 이용한 결과 위치 보정의 처리시간 (단위: 1/1000초)

<table>
<thead>
<tr>
<th></th>
<th>1PP</th>
<th>4PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothing</td>
<td>773.80</td>
<td>106.36</td>
</tr>
<tr>
<td>영상 보정</td>
<td>786.91</td>
<td>204.28</td>
</tr>
<tr>
<td>위치 추정</td>
<td>126.34</td>
<td>819.12</td>
</tr>
<tr>
<td>총 실행 시간</td>
<td>1229</td>
<td>1265.1</td>
</tr>
</tbody>
</table>

표 5. DEM을 이용한 결과 위치 보정의 처리시간 (단위: 1/1000초)

<table>
<thead>
<tr>
<th></th>
<th>1PP</th>
<th>4PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>특정점 추출</td>
<td>610.74</td>
<td>229.3</td>
</tr>
<tr>
<td>영상 보정</td>
<td>24.3</td>
<td>14.82</td>
</tr>
<tr>
<td>영상 정합 1단계</td>
<td>467.28</td>
<td>132.3</td>
</tr>
<tr>
<td>2단계</td>
<td>173.04</td>
<td>49.44</td>
</tr>
<tr>
<td>위치 추정</td>
<td>4110.77</td>
<td>1863.76</td>
</tr>
<tr>
<td>총 실행 시간</td>
<td>3396.13</td>
<td>2261.62</td>
</tr>
</tbody>
</table>

그림 6-1. 영상 향법 시스템에 의한 추정 경로

그림 6-2. 영상 향법 시스템의 추정 위치 오차 비교

표 6. 영상 향법 변수 추출 시스템에 대한 추정 경로

<table>
<thead>
<tr>
<th></th>
<th>상단 위치 추정 결과</th>
<th>전단 위치 보정 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>총 비행 거리</td>
<td>29.95 (km)</td>
<td>30.513 (km)</td>
</tr>
<tr>
<td>평균 위치 차이</td>
<td>151.45 (m)</td>
<td>78.88 (m)</td>
</tr>
<tr>
<td>최종 위치 차이</td>
<td>239.95 (m)</td>
<td>117.82 (m)</td>
</tr>
</tbody>
</table>