음향공에 의한 LOX-RPI
고주파 음향-연소안정화에 관한 연구

이길용 · 윤웅섭 · 조용호
(연세대학교 기계공학과, *현대경공)
(e-mail : wsyoon@yonsei.ac.kr)

액체 추진 로켓 엔진의 고주파 연소 불안정 관리는 대체로 연소기 내부의 음향 공명 모드와 분무 연소 과정의 상호 작용을 유도 메커니즘으로 전개하며 Rayleigh Criterion의 재해석에 기초하여 불안정성 평가를 위한 메개변수를 도입하고 연소 불안정성을 예측한다. 여기에는 음향장 분석 이론, 음향 불안정 이론, 연소응답 및 기회반응 이론 등이 포함된다. 본 연구에서는 LOX/RPI 추진체 조합의 액체 추진 로켓 엔진 연소기를 대상으로 다차원 순수 음향장 해석과 연소-음향장 분석을 통해 대상 엔진의 고주파 연소 불안정 특성을 예측하였다. 수동 제어 기기인 음향공 설치에 따른 연소기의 음향장 및 연소-음향장의 특성 변화를 고찰하고 위 결과를 종합하여 음향공의 연소 불안정 역제 성능 및 대상 엔진의 연소 불안정성을 평가하였다. 연소기 형태 및 음향공 설치에 따른 다차원 순수 음향장 해석은 상용코드인 ANSYS를 사용하여 수행하였다. 내부 유체는 압축성, 비점성 유체로 유체의 평균 유효은 무시하며 위치에 관계없이 균일한 물성치를 부여하였다. 정상상태 연소과정을 가정하고 균형화학을 이용한 분석 결과로부터 연소 기계의 관련 물성치를 결정하였다. 연소기 갑이 방향, 변형 방향, 원주 방향 격자점들의 음향 특성을 주파수 영역에 대해 해석하고 3차원 음향 모드 형상을 토대로 음향장을 분석하였다. 연소-음향장 해석은 음향 불안정 이론 중 n-1 2 메개변수 기법을 사용하였다. 연료 역적의 분부 연소 과정을 1차원적으로 가정하고 정상상태의 평균화학 계산 결과를 이용하여 연진의 연소변을 1차원적으로 설정하였다. 상류 연소응답과 중립 안정 곡선을 토대로 대상 엔진의 연소 불안정 특성을 분석하였다. 연소기의 음향 공명 모드 중 제1 점선방향, 제2 점선방향, 제1 반경방향 모드에 대한 연소응답을 계산하였으며 복잡한 형태의 음향공을 적응반응 형상으로 단순화시켜 모델링 하였다. 연구 결과 제1 점선방향, 제2 점선방향, 제1 반경방향 음향 공명 모드에 해당하는 공명 주파수인 2100, 3100, 4000 (Hz)을 대상으로 각각 음향공을 설치한 경우 무적한 음향 공명 모드의 연소반응은 급격히 감소하였으나 음향공 설치 혹은 제거에 따른 중립 안정 곡선의 변화는 미미하였다. 음향공 설치는 대상 대상 음향 공명 모드의 연소 반응은 지배적인 영향을 미치거나 여타 모드에 대해서는 거의 영향을 미치지 않았다. 또한 다차원 음향장 해석 결과와 연소-음향장 계산 모두 거의 동일한 불안정 고투모드를 예측하였다.