Numerical Study of Thermal Choking Process in a Model SCRamjet Combustor

모델 스크램제트 연소기 내의 열적 질식 과정 수치 연구

  • 이병로 (서울대학교 항공우주공학과) ;
  • 문귀원 (서울대학교 항공우주공학과) ;
  • 정인석 (서울대학교 항공우주공학과) ;
  • 최정열 (부산대학교 항공우주공학과)
  • Published : 2000.12.08

Abstract

A numerical study was carried out to investigate the 'unstart' process of thermally-choked combustion in model scramjet engines. The combustion mechanism of supersonic combustor will be compared with the experimental results obtained from the T3 free-piston shock tunnel at ANU (Australian National University) and the high enthalpy supersonic wind tunnel at UT (University of Tokyo). For the numerical simulation of supersonic combustion. multi-species Navier-Stokes equations were considered. and detailed chemistry reaction mechanism of $H_2$-Air were adopted. The governing equations were solved by Roe's FDS method and LU-SGS method with MUSCL scheme. In this study. it is found that the thermal choking process could result from excessive heat release due to combustion. In detail, sufficient heat release could be generated at local region of very high temperature increased by reflection of shock waves or vortex sheets. Accordingly the flow of downstream of the combustor fell to subsonic field propagated upstream along the combustor. Sometimes the subsonic flow field propagated into isolator could generate precombustion shock waves in the isolator.

Keywords