Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link N

Kang Min-Goo, Byun Gi-Sik
Dept. of Control & Instrumentation Engineering, Pukyong National University

Abstract - This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

1. 서론

산업용 로봇의 가장 단순하고 일반적인 보상 방법은 PD제어기를 이용하는 것이다. 이 방법은 낮은 가속률 사용하기 때문에 각 축 사이를 독립적인 메니퓰레이터로 간주하여 설계하고 실험으로 성능에 어느 정도 만족할 만한 성과를 보인다. 특히 본 연구에서 사용되는 평행링크 구조의 메니퓰레이터는 구조적으로 기존의 각 관절에 있던 무거운 맥락이 하단부에 위치하고 있고 구동 토크는 정향사변형 구조에 따라서 전달되는 형태를 가지기에 때문에 플랫폼의 전체적인 질량이 가벼운 제어의 효용성을 더욱 높일 수 있다. 또 각 맥락 사이의 간선을 적절히 계열도 해야 수업용 메니퓰레이터에 많이 사용되어지고 있다. 하지만 고속, 정밀한 제어도 주중에 있어서는 맥락사이의 간선을 무시할 수 없게 되고 PD제어법으로는 성능에 만족하지 못하게 된다.[1][2] 대부분의 제어는 동적 모델을 이용해 하던 것이 제어기 설계하기 힘들었던 과라멘터의 불확실성과 모델구조 불확실성 그리고 외부로 제어기 설계가 어렵게 된다. 따라서 강영상 제어기 모듈이 필요한데 본 연구에서는 적용제어, 슬라이딩 모드 제어 기법들이 많이 사용되고 있다. 본 논문에서는 고전제어를 기초로 한 주파수 영역 설계 방법의 하나인 QFT(Quantitative Feedback Theory)를 이용해 2차원 시스템 평행링크 메니퓰레이터를 ICD(Individual Channel Design) 방법으로 설계한 다음에 MIMO(Multi Input Single Output) QFT방법을 적용시키고 제어기를 설계하였다.[3][4][5][6][7][8]

2. 본론

2.1 로봇시스템의 모델링

2.1.1 로봇의 동역학 모델

그림 1.1은 직접 제어하는 2차유도 평행링크 메니퓰레이터이다.

\[M(q) \ddot{q} + h(q, \dot{q}) \dot{q} + F(q, \dot{q}) = g(q) = \tau \]

\[M(q) = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \]

\[h(q, \dot{q}) = \begin{bmatrix} 0 \\ -M_{12} \dot{q}_1 \sin(q_2 - q_1) \end{bmatrix} \]

\[F = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}, \quad g(q) = \begin{bmatrix} Y_1 \cos q_1 \\ Y_2 \cos q_2 \end{bmatrix}, \quad \tau = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} \]

\[g(q) \text{는 맥락 각도 벡터, } \tau \text{는 입력 토크 벡터, } M(q) \text{는 관성행렬, } h(q, \dot{q}) \text{는 코리올리스 및 외력행렬, } F \text{는 접촉력행렬, } \]

\[g(q) \text{는 증폭행렬을 나타낸다.} \]

2.1.2 전동기를 포함한 동역학 모델

\[\begin{bmatrix} \dot{i}_{11} \\ \dot{i}_{12} \end{bmatrix} = \begin{bmatrix} \dot{q}_1 + \frac{d}{d_1} \frac{d}{d_2} \end{bmatrix}, \quad \begin{bmatrix} \dot{i}_{11} \\ \dot{i}_{12} \end{bmatrix} \]

\[\begin{bmatrix} \dot{q}_1 + \frac{d}{d_1} \frac{d}{d_2} \end{bmatrix} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \]

\[\begin{bmatrix} \dot{i}_{11} \\ \dot{i}_{12} \end{bmatrix} = \begin{bmatrix} \dot{q}_1 + \frac{d}{d_1} \frac{d}{d_2} \end{bmatrix} \]

\[\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} \dot{q}_1 + \frac{d}{d_1} \frac{d}{d_2} \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} \frac{J_i}{a} \frac{K_i}{R} \end{bmatrix}\]

\[k_1 = M_{11} \cos(q_1 - q_1), \quad k_2 = M_{12} \cos(q_1 - q_1) \]

\[h_1 = M_{11} \cos(q_1 - q_1), \quad h_2 = M_{12} \cos(q_1 - q_1) \]

\[d_1 = \dot{q}_1 \sin(q_2 - q_1) \quad d_2 = \dot{q}_2 \sin(q_2 - q_1) \]

\[a = \frac{J_i}{a} \frac{K_i}{R} \]

\[d_1 = M_{11} \dot{q}_1 \sin(q_2 - q_1), \quad d_2 = M_{12} \dot{q}_2 \sin(q_2 - q_1) \]

\[g_1 = V_1 \cos q_1, \quad g_2 = V_2 \cos q_2 \]

\[K_i \text{는 모터상수, } K_i \text{는 역기전력상수, } J_i \text{는 모터의 환성모멘트, } D_{m} \text{는 접촉력계수, } R \text{는 전기 저항, } \]

\[\tau \text{는 기어입력전압을 나타낸다.} \]

\[\text{식(2)과 그림 2에서 보듯이 맥락간의 간섭요소가 여러개 있는 것을 알 수 있고, 중력이나 파라메터 변화등에 발생하는 불확실성이 존재하는 것을 확인할 수 있다.} \]
2.2 QFT 제어 이론

QFT는 1960년대 LM Horowitz에 의해서 제안된 주파수 영역의 설계기법인 고전 제어이론으로서 정확하게 플래트의 불확실성을, 외란 및 요구되어지는 사양에 대해 제어를 결정하는 의미에서의 정량적인(quantitative)것이다.

다양한 조건을 설정하기는 안전과 제어성상에서 추정이 아닌 플래트 옵티머 수행에 적용할 수 있기 때문에 상태공간 (State space) 형태나 그 밖에 다른 형태의 모델이 필요 없다.

QFT 제어기의 설계 순서는 먼저 설계사를 정하고 N개의 LTI 플래트를 선정하여 각각의 주파수에서의 불확실한 플래트의 주파수 옵티머의 집합인 템플레이트를 나플로드 손으로 나타낸다.

그런 다음 안정조건 설계 사양을 만족시키는 제어조건을 구한다. 제어조건은 루프 형성에 의한 공동주파응답수 L₁(s)와의 적합성을 가지게 된다. 공통주파응답수 L₁(s)는 식(5)으로 정의되어 있다. L₁(s)는 가능한 한 제어조건 위에 그 근처에 있도록 하여야 한다.

$$L₁(s) = \frac{P₁(s)C(s)}{P₁(s)}$$

2.3. QFT 제어기 설계

로봇 메니퓰레이터를 ICD 기법을 통해 먼저 체널을 분리하고 각 체널에 대해서 QFT 제어이론을 적용한다.

그림 1에 중력과 링크간의 간섭 및 파라메타 오차 등에 sin 항과 cos항이 포함되어 있기 때문에 각도가 변함에 따라 파라메타 값이 변하게 된다. 하지만 설계에서 얇는 간섭은 각 체널의 출력 외판으로 처리하고 중력 및 파라메타 오차들은 불확실성으로 간주하여 처리한다.

위상모멘트를 정확하게 구하는 것은 상당한 어려움으로 식(6)에서 관성모멘트를 불확실한 구간으로 정하는 체널 1은 $$a = [0.0,1.0,2.0,4.2,4.1,10.0,100.0,400.0]$$ 체널 2는 $$a = [0.0,1.0,2.0,4.2,6.10.20,100.0,200.0,400.0]$$ 주파수를 선정하여 제어기를 설계한다.

\[\begin{align*}
I₁ &= [9.4650 \times 10^{-6}, 1.7983 \times 10^{-4}] \\
I₂ &= [3.6864 \times 10^{-6}, 7.0042 \times 10^{-5}] \\
I₃ &= [9.5420 \times 10^{-6}, 1.8130 \times 10^{-4}] \\
I₄ &= [8.6330 \times 10^{-5}, 1.6 \times 10^{-3}]
\end{align*} \]

설계 사양은 1.2 채널 모두 아래와 같다.

\[\begin{align*}
o & \text{이득여유} = 10 \text{dB} \\
o & \text{위상여유} = 45 \degree \\
o & \left| \frac{\gamma(s)}{D(s)} \right| = \left| \frac{1}{C(s)P₁(s)} \right| = 0.00 \quad \gamma(s) = \frac{\gamma₁}{\gamma₂} \text{과 동일한 관계를 나타낸다.} \\
C₁(s) &= k₁g₁(1-γ₁) \quad (4) \\
k₁(s) &= \frac{k₁g₁h₁}{1+k₁g₁} \\
d₂(s) &= \frac{g₂h₂}{g₂h₂} \\
\text{제어기 설계 때는 사변시스템을 1로 두고 설계한다.} \\
\text{QFT 제어 이론} \\
\end{align*} \]
파라메타 변동과 외란 및 구조의 불확실성에도 불구하고 목표해석을 잘 추출했다. 컴퓨터 시뮬레이션을 통해 QFT 제어기의 강성과 유용성을 확인하였고 실제 실험을 통해 시뮬레이션의 타당성을 입증하였다. 그리고 ICD기술을 통해 다변수 시스템에 고전제어 기법을 적용할 수 있는 계기를 마련하였으며, QFT기술을 다변수 로봇 매니퓰레이터에 적용했다는 큰 의미가 있다고 하였다.

차후 ICD의 제어분리 과정에서 차수가 늘어지게 되는데 이 부분에 대한 저자와 기법이 연구되어야 할 것 같다.

3. 시뮬레이션 및 실험

<table>
<thead>
<tr>
<th>표 1. 링크 파라메타</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_i (kg)</td>
<td>0.0153</td>
<td>0.0098</td>
<td>0.0158</td>
<td>0.0200</td>
</tr>
<tr>
<td>I_{xx} (m)</td>
<td>0.17</td>
<td>0.10</td>
<td>0.17</td>
<td>0.52</td>
</tr>
<tr>
<td>I_{yy} (m)</td>
<td>0.06</td>
<td>0.0498</td>
<td>0.085</td>
<td>0.0026</td>
</tr>
<tr>
<td>I_{zz} (m)</td>
<td>9.495×10^{-3}</td>
<td>1.32×10^{-3}</td>
<td>9.542×10^{-3}</td>
<td>8.603×10^{-3}</td>
</tr>
</tbody>
</table>

4. 결론

본 논문에서 제안한 ICD기술과 QFT이론을 이용한 2차유도 로봇 매니퓰레이터의 고속격적 추종에 대해 알아 보았다. 고속격적 추종시 링크간의 간섭을 최소화하였고 실험을 통해 시뮬레이션의 타당성을 입증하였다. 그리고 ICD기술을 통해 다변수 시스템에 고전제어 기법을 적용할 수 있는 계기를 마련하였으며, QFT기술을 다변수 로봇 매니퓰레이터에 적용했다는 큰 의미가 있다고 하였다.

차후 ICD의 제어분리 과정에서 차수가 늘어지게 되는데 이 부분에 대한 저자와 기법이 연구되어야 할 것 같다.

3. 시뮬레이션 및 실험

<table>
<thead>
<tr>
<th>표 1. 링크 파라메타</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_i (kg)</td>
<td>0.0153</td>
<td>0.0098</td>
<td>0.0158</td>
<td>0.0200</td>
</tr>
<tr>
<td>I_{xx} (m)</td>
<td>0.17</td>
<td>0.10</td>
<td>0.17</td>
<td>0.52</td>
</tr>
<tr>
<td>I_{yy} (m)</td>
<td>0.06</td>
<td>0.0498</td>
<td>0.085</td>
<td>0.0026</td>
</tr>
<tr>
<td>I_{zz} (m)</td>
<td>9.495×10^{-3}</td>
<td>1.32×10^{-3}</td>
<td>9.542×10^{-3}</td>
<td>8.603×10^{-3}</td>
</tr>
</tbody>
</table>

표 2. 전동기 파라메타 값

<table>
<thead>
<tr>
<th>Symbol</th>
<th>단위</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_s</td>
<td>kg·m²</td>
<td>1.1×10^{-5}</td>
</tr>
<tr>
<td>D_s</td>
<td>kg·m²/s</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>N·m/A</td>
<td>0.16</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>K_t</td>
<td>N·m/A</td>
<td>0.0168</td>
</tr>
<tr>
<td>K_v</td>
<td>V/ps</td>
<td>0.0168</td>
</tr>
<tr>
<td>K_c</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

실제의 QFT 제어기에서 제안한 1,2차고도 루프 제어기의 결과에서 무부하일 경우와 100(g)의 부하를 단 경우에 대해 흐름지기 탐색을 수행하였다. 그림 6.의 실험 결과의 목표해석을 잘 추출하고 있는 경우 확인할 수 있다.

실제 결과가 예상보다 낮은 이유는 기어의 backlash 및 기구 제작자의 미각한 때문이라 할 수 있었다.

4. 결론

본 논문에서 제안한 ICD기술과 QFT이론을 이용한 2차유도 로봇 매니퓰레이터의 고속격적 추종에 대해 알아 보았다. 고속격적 추종시 링크간의 간섭을 최소화하였고 실험을 통해 시뮬레이션의 타당성을 입증하였다. 그리고 ICD기술을 통해 다변수 시스템에 고전제어 기법을 적용할 수 있는 계기를 마련하였으며, QFT기술을 다변수 로봇 매니퓰레이터에 적용했다는 큰 의미가 있다고 하였다.

차후 ICD의 제어분리 과정에서 차수가 늘어지게 되는데 이 부분에 대한 저자와 기법이 연구되어야 할 것 같다.

3. 시뮬레이션 및 실험

<table>
<thead>
<tr>
<th>표 1. 링크 파라메타</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_i (kg)</td>
<td>0.0153</td>
<td>0.0098</td>
<td>0.0158</td>
<td>0.0200</td>
</tr>
<tr>
<td>I_{xx} (m)</td>
<td>0.17</td>
<td>0.10</td>
<td>0.17</td>
<td>0.52</td>
</tr>
<tr>
<td>I_{yy} (m)</td>
<td>0.06</td>
<td>0.0498</td>
<td>0.085</td>
<td>0.0026</td>
</tr>
<tr>
<td>I_{zz} (m)</td>
<td>9.495×10^{-3}</td>
<td>1.32×10^{-3}</td>
<td>9.542×10^{-3}</td>
<td>8.603×10^{-3}</td>
</tr>
</tbody>
</table>

표 2. 전동기 파라메타 값

<table>
<thead>
<tr>
<th>Symbol</th>
<th>단위</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_s</td>
<td>kg·m²</td>
<td>1.1×10^{-5}</td>
</tr>
<tr>
<td>D_s</td>
<td>kg·m²/s</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>N·m/A</td>
<td>0.16</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>K_t</td>
<td>N·m/A</td>
<td>0.0168</td>
</tr>
<tr>
<td>K_v</td>
<td>V/ps</td>
<td>0.0168</td>
</tr>
<tr>
<td>K_c</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

표 3. 실험 결과

<table>
<thead>
<tr>
<th>(a)주기(2/sec),반응률:0.03(%)</th>
<th>(b)주기(2/sec),반응률:0.03(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>부하:100(g)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(a)주기(2/sec),반응률:0.03(%)</th>
<th>(a)주기(2/sec),반응률:0.03(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>부하:100(g)</td>
<td></td>
</tr>
</tbody>
</table>

[참고문헌]