Measurement and Scale Effects of Digitized Virtual Human Head
Edmond C. Prakash, Reginald C. Jegathese and Tony K. Y. Chan
(Nanyang Technological Univ. (NTU))

Measurement of complex surfaces without touching is desirable in several fields. This arises mainly for measurement of complex surfaces including those surfaces that deform during touch. Our research presented in this paper describes the use of a 3D digitizer for scanning 3D objects. The use of such a device, in addition to proper calibration, requires proper scaling in all three dimensions. We propose measurement techniques to measure various aspects of the surface circumference, area and volume. We also present experiments from using a 3D Minolta digitizer for measuring 3D human heads.

Rehabilitation System of Hand Manipulation Using Virtual Reality
Yoshio Fukuda, Takakazu Ishimatsu, Toshio Higashi, Tetsuo Nagao, Takashi Takeda (Nagasaki Nagasaki Institute of Applied Science)

Recently computer graphic technology has achieved remarkable development. Applications of this technology to various fields are expected. In this study, one application of computer graphics to the medical field is shown. We developed a rehabilitation system of hand manipulation using virtual reality aiming to offer enjoyable rehabilitation training to physically handicapped people with upper limb disabilities. This rehabilitation system generates training environments for upper limbs, such as moving balls in virtual space of computer. And by using data glove as a sophisticated input device, a user can manipulate objects in virtual space by his hand. By using this rehabilitation system, a user can have rehabilitation training under various conditions without feeling tedious.

Non-contact sensor to detect movement of dementia patient
Rei Satoh, Seigo Ariki, Takakazu Ishimatsu, Nobuoh Matsuzakai(Nagasaki Univ.), Kang Chul Ung(Chaju Univ.)

In this paper we explain about systems developed to forecast the standing up of the dementia patients. Basic idea of our approach is to measure the respiration and body movements in the bed. Based on the data measured, forecasting of standing up action from the bed is possible to some extent. First system proposed uses an image processing technique. Data obtained about the respiration and movements are used to forecast the standing up of the patients. The second system uses ultrasonic sensors, which emits and receives ultrasonic signals. Two techniques of the ultrasonic sensors are considered. One technique is to emit ultrasonic burst signals and to detect the instance when...