Remote Sensing and Control

09:00-11:00 Chair: Choi Gi H. (Hansung Univ.)
Room: C204 Co-Chair: Kim Sang-Bong (Pukyong National Univ.)

09:00 - 09:20 Development of Real Time Monitoring and
Forecasting/Emergency System for Land Slide of Road
Choon-Sik Kim, Soo-Ho Yoon (Korea Univ.)
Seung-Mok Shin, Hur Chul, Sang-Bong Kim (Pukyong National
Univ.)
This paper introduces a real-time inspecting and monitoring
system by using wireless communication and image
processing technique. The communication system is
developed by using 80c196kc microprocessor and it has
data acquisition function for several kinds of sensors such as
pluviometer, temperature, tension meter, clinometer and so
on. The image processing method adopts Lalacian of
Gaussian operator and least square method to extract line
features for the captured images and uses a relaxation
matching algorithm based in global structure constraint
satisfaction to distinguish the matching error for those
features. When the algorithm is processed, motion
parameters of displacement area and its direction are
computed. Once movement is recognized ...

09:20 - 09:40 Design of A Data Transmission System for Pneumatic
System Control
Chun Pyo Hong (Taegu Univ.),
Dong Soo Kim(KIMM)
For pneumatic system control, we need a data transmission
system with high speed and reliability for information
interchange between main computer and I/O devices. This
paper presents a set of design techniques for a data
communication system that is mainly used for pneumatic
system control. For this purpose, we first designed hardware
modules for an interface between central control module and
local node that handles the operation of solenoid valves. In
addition, we developed a communication protocol for
construction of RS-485 based multi-drop network, and this
protocol is basically designed with a kind of polling technique.
Finally we evaluated performance of the developed system.
The field test results show that, even under high noise
environment, the data transmission of 375Kbps rate is ...

09:40 - 10:00 LonWorks-based Distributed Monitoring and Control for
Predictive Maintenance (PM)
Gi Heung Choi
(Hansung Univ.)
Requirements for Distributed Monitoring and Control
Networks (DMCN) differ greatly from those of typical data
networks. Specifically, any DMCN technology which employs
a fieldbus protocol is different from IP network protocol
TCP/IP. In general, one needs to integrate fieldbus protocol and
TCP/IP to realize DMCN over IP network or internet.
Interoperability between devices and equipments is essential
to enhance the quality and the performance of predictive
maintenance (PM). This paper suggests a basic framework
for LonWorks-based DMCN over IP network and a method
to guarantee interoperability between devices and
equipments.

10:00 - 10:20 Development of a Geometry PIG for the Inspection of
Natural Gas Pipeline and It's application
Dong-Kyu Kim, Sung-Ho Cho, Seoung-Soo Park, Dae-Jin Park
Sung-Ja Koo, Hui-Ryong Yoo,Yong-Woo Rho, Young-Tai Kho
(KOGAS)
The geometry PIG provides pipeline operators with continuous
measurement of pipe centerline coordinates, bend radius,
displacement, and bending strain in a single pass through the
pipeline. This study introduces the developed geometry
PIG(Pipeline Inspection Gauge) which is used for geometry
surveys. This tool is equipped with the several sensor
systems. The Inertial Navigation System (INS) comprises
angle rate gyros and linear accelerometers. The system
measures the precise path of the PIG during its traverse of the
pipeline. This system is also used to produce a detailed map
of the line, measure curvature. Odometers measure the PIG's
distance moved along the line and instantaneous speed
during the PIG run. Caliper sensors measure pipeline ...

10:20 - 10:40 Repetitive Compensation Control for AGC System By
Using Pre-Pass Rolling Data
Hwan Seong KIM(Korea Maritime), Jin Seon PARK, Sang Dol Lee,
Keum Jae Lee, Sung Kwan Park (DongKuk Univ.)
This paper deals with a modified repetitive control method
for compensating automatic gauge control (AGC) to reduce
the effect of skid mark which directly influence the quality of
products in plate mill process. Since the skid mark on the
plate have thermal difference, it makes a different stretching
rate and deflection of thickness. Firstly, the AGC system and
the plate mill process are described by considering function
in each control levels. The skid mark of the plate in practical
control fields is shown. Also, its frequency variation is given
by on-line FFT analysis method. Secondly, a key idea of the
modified repetitive control method with time varying period
disturbance is represented and compared with standard
repetitive control method. Lastly, in simulation ...

150