Molecular genetic analysis of phytochelatin synthase genes in Arabidopsis

  • Ha, Suk-Bong (Department of Genetic Engineering, Chonnam National University)
  • Published : 2002.04.01

Abstract

This study has investigated the biosynthesis and function of the heavy metal binding peptides, the phytochelatins, in plants. PCs are synthesised enzymatically from glutathione by the enzyme PC synthase in the presence of heavy metal ions. Using Arabidopsis thaliana as a model organism cadmium-sensitive, phytochelatin-deficient mutants have been isolated and characterised in previous studies. The cadl mutants have wildtype levels of glutathione, are PC deficient and lack PC synthase activity. Thus, the CADl gene has been proposed to encode PC synthase. The CADl gene was isolated by a positional cloning strategy The gene was mapped and a candidate identified. Each of four cadl mutants had a single base pair change in the candidate gene and the cadmium-sensitive, cadl phenotype was complemented by the candidate gene. This demonstrated the CADl gene had been cloned. A homologous gene in the fission yeast, Schizosaccharomyces pombe was identified through database searches. A targeted-deletion mutation of this gene was constructed and the mutant, like cadl mutants of Arabidopsis, was cadmium-sensitive and PC-deficient. A comparison of the redicted amino acid sequences reveals a highly conserved N-terminal region Presumed to be the catalytic domain and a variable C-terminal region containing multiple Cys residues proposed to be involved in activation of the enzyme by metal ions. Similar genes were also identified in animal species. The Arabidopsis CADl/AtPCSl and S. pombe SpbPCS genes were expressed in E. coli and were shown to be sufficient for glutathione-dependent, heavy metal activate PC synthesis in vitro, thus demonstrating these genes encode PC synthase enzymes. Using RT-PCR, AtPCSl expression appeared to be independent of Cd exposure. However, at higher levels of Cd exposure a AtPCSl-CUS reporter gene construct appeared to be more highly expressed. Using the reporter gene construct, AtPCSl was expressed most tissues. Expression appeared to be greater in younger tissues and same higher levels of expression was observed in some regions, including carpels and the base of siliques. AtPCS2 was a functional gene encoding an active PC synthase. However, its Pattern of expression and the phenotype of a mutant (or antisense line) have not been determined. Assuming the gene is functional then it has clearly been maintained through evolution and must provide some selective advantage. This implies that, at least in some cells or tissue, it is likely to be the dominant PC synthase expressed. This remains to be determined

Keywords