Basic study of comfortable air movement for subjects to use the occupation experience

Man Soo Kim*, Jong Su Kurni, Hyung Chul Kim*
Baik Yung Chung**, Ho Seon Choi**

*Department of Mechanical Engineering, Pukyong National University, Busan 608-737, Korea
**LG Electronics Inc., Seoul 133-029, Korea

Abstract: Resident's agreement about anger elevation request by improvement of life environment with economy development is increasing recently. However, research about air current estimation in dwelling environment that make use of air conditioner summer and cooling room is lacking going yet much. We are going to prefer most air current patterns(speed 3 steps of swing) that offer in PAC after figure processing because user's life interestness and present air current pattern that is supposed and offer more agreeable environment to room resident.

Key words: 기존(Air current) 공급(Air amount) 가속력(Air velocity value) 신선온도감(TSV) 레벨과감(CSV) 가속력(Air-velocity sensation)

1. 서론

최근 경제 발전과 함께 식생활환경의 기만에 따른 자동차의 제조업 부업 요구가 적절 증가하고 있으나, 따라서 기후관련에 대한 연구분정으로 자가성의 필요성이 점차 지적되고 있고 기후
자니 공학적 적용을 기술시지기 위한 연구가 점차자이다. 이론적 방법론을 적용하여 실습을 위한 기후관련에 대한 연구는 아직 존재가 부족한 실정이다. 따라서 아름들 실내에서 주로 입체적이에게 어진 실내기준을 위해 저부자산의 실습을 통
해 인체에 미치는 영향, 성득한 변화를 분석하고 성능기준의 미라에서 더욱 자세히 평가할 필요를

2. 연구의 목적

가구와의 이어진 가비입니다에 대한 개인의 패턴을 분석하여 개인의 패턴에 따른 가도 특성에 대하여 분석하였다. 인체에 미치는 영향을 판단하기 위하여 주요한 정보는 TSV와 CSV 및 국부온도도를 사용하였으며, PAC에서 제공하는 기판패턴(추력의 속도보다 3배가)은 사용자의 생활이사가 인체에 미치는 영향을 가정한 향의가 예상되는 기준에 대한 단어를 제시하는 것이 본 연구의 목적이다.

3. 실험장치 및 방법

3.1 측정요소 및 측정장비

측정요소는 환경물리적으로서 실내기온은 11.1m, 0.6m에서 골드온도, 상대습도는 11.1m에서 측정하였으며 실내온도는 지표면강도 0.0m, 0.1m, 1.0m에서 측정하여 흡착성에 가장 적합한 값을 사용하였다.

인체의 요소로서 허브의 중요한 허브는 'Handy & DuBois 7법'을 사용하였으며, 각 요소의 측정장비는 Table 1에 표시하였다. 모든 대이터(실내기온, 실내온도, 상대습도, 허브온도, 골드온도)는 라디악 기록기 (YOKOGAWA 사, MODEL 3880)를 통해 PC에 매 10초 간격으로 저장하였다. Table 1은 측정장비와 측정 위치를 나타내고 있다.

3.2 실험방법

3.2.1 실험조건

인체측정을 여러 실험조건을 반복하도록 기온 33±1℃, 상대습도 50±5%를 유지하여 30분 동안의 진열을 제공하고 실험 직후 본실에서 기온 20±0.5℃, 상대습도 50±5%의 환경을 제공하였다.

설비물량이 설정된 피험자 6명을 약물구, 중부구, 강센구의 위치한 총 3개 구간으로

<table>
<thead>
<tr>
<th>Table 1 Pnitions of sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
</tr>
<tr>
<td>Air-Velocity (m/s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Experimental setting condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>Humidity (%)</td>
</tr>
<tr>
<td>Airflow</td>
</tr>
<tr>
<td>Swing Speed</td>
</tr>
</tbody>
</table>

3.2.2 실험장소 및 기간

실습은 부건대학교 병동공조과학과 항온양

Photograph 1 Subject the experimentation
3.2.2 수건설과 영양(험문내용)

Table 3 Voting Scales

<table>
<thead>
<tr>
<th>TSV</th>
<th>CSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Very hot</td>
</tr>
<tr>
<td>-2</td>
<td>Warm</td>
</tr>
<tr>
<td>-1</td>
<td>Slightly warm</td>
</tr>
<tr>
<td>0</td>
<td>Neutral</td>
</tr>
<tr>
<td>-1</td>
<td>Slightly cool</td>
</tr>
<tr>
<td>-2</td>
<td>Cool</td>
</tr>
<tr>
<td>-3</td>
<td>Very uncomfortable</td>
</tr>
</tbody>
</table>

피험자의 주관적인 실리반응을 분석하기 위해 실험에 사용한 설문지의 내용으로써 Table 3은 전신온도(7도점), 체질량(7도점)을 표시하였으며, Table 4는 의미미분법에 의한 25항목 7도점을 나타내었다. 이 외에도 기류감과 기름 탕착감에 대하여 같은 형태의 7도점을 이용하여 설문을 시행하였다.

3.2.3 실험

피험자는 표준 환경인 20도로 남녀 대학생 60명으로 하였다. 모든 피험자는 구경온도 37℃이하이며 장상결합의 전장한 사람으로 구성하였다. 연령 및 신체적 조건은 Table 4와 같다.

Table 4 Anthropometric data of the subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Number of subjects</th>
<th>Age</th>
<th>Weight [kg]</th>
<th>Body area [cm²]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>30</td>
<td>24</td>
<td>83.2 ± 16.6</td>
<td>173.7 ± 2.6</td>
<td>72.6 ± 3.2</td>
</tr>
<tr>
<td>Female</td>
<td>30</td>
<td>25</td>
<td>70.2 ± 17.7</td>
<td>164.1 ± 16.7</td>
<td>151.2 ± 18.7</td>
</tr>
</tbody>
</table>

* Calculated by Totalized Equation

Body Area = 71.86 × (Weight [kg] / Height [cm])

SD is the between-subject standard deviation.

3.2.4 작위량과 대사량

피험자와 작위량은 동정한 값으로 하여 위아래 모두 유니폼을 적용시켰다. 작위량은 구하는 방법은 다른 연구자에 의하여 제안되었으나 본 실험에서는 외국인의 경우와 동일한 계산조건으로 비교하기 위해 외국인의 작위량을 계산하는 방법[1]을 사용하였고, 적은 다음과 같다.

\[\text{Clo (male)} = 0.000058 \times \text{체중의 중청량} + 0.088 \]
\[\text{Clo (female)} = 0.000033 \times \text{체중의 중청량} - 0.025 \]

식을 사용하여 계산한 결과 작위량은 0.81met로 되었다. 대사량은 피험자가 의자에 적절한 상태에서 누워, 가벼운 대화, 설문을 하고 있는 것으로 보아서 1.1met로 가정하였다.
4. 실험결과 및 고찰

4.1 선택 동향별 분석

Table 5에서 저속·중속·고속스윙의 대상 분석에 본 결과 저속스윙을 선택한 피험자는 27명, 중속스윙을 선택한 피험자는 26명을 나타냈으며, 고속스윙을 선택한 피험자는 7명 이었다.

피험자 위치에서의 평균 동작은 Table 6에 서와 같이 나타났으며, 중앙의 최측에 따라 피 험자 위치에 따른 동작의 결과를 볼 때 피험자 위치 신체적 위치에 따라 기여도가 다른 영향으로 달라졌음을 알 수 있다.

Table 5 The value of choosing subjects airflow and swing speed

<table>
<thead>
<tr>
<th></th>
<th>Slow swing (27 subjects)</th>
<th>Normal swing (26 subjects)</th>
<th>Fast swing (7 subjects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>airwave</td>
<td>Weak</td>
<td>Middle</td>
<td>Strong</td>
</tr>
<tr>
<td>Number of subjects</td>
<td>6</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6 Air-velocity of airflow and swing speed

<table>
<thead>
<tr>
<th></th>
<th>Slow airflow</th>
<th>Middle airflow</th>
<th>Strong airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow swing</td>
<td>0.2 m/s</td>
<td>0.3 m/s</td>
<td>1.2 m/s</td>
</tr>
<tr>
<td>Nomal swing</td>
<td>0.5 m/s</td>
<td>0.5 m/s</td>
<td>1.5 m/s</td>
</tr>
<tr>
<td>Fast swing</td>
<td>0.3 m/s</td>
<td>0.8 m/s</td>
<td>1.0 m/s</td>
</tr>
</tbody>
</table>

4.2 인체온감감 외가

최고속도의 스윙속도를 인체적 요소가 저속, 중속, 고속의 스윙을 제공하였으며, 각 각의 스윙속도 피험자의 주관적 선택에 따라

이 처제적으로 자연계에 가장 적합한 기류를 선택하여 나누어진 것이다. 1시간 동안 동안의 실험을 진행한 결과 다음과 같은 결과를 도출하였다.

Fig. 2 TSV와 CSV를 분석이션 후부터 의 적응변화를 나타내고 있으며, 각 스피드로 모두 약간 서열하지만 모두 희망하고 있다.

Fig. 3 AVS와 AVV during the test period

고속스윙군은 임상 후부터 10분까지 온도감이 다 무리가에 밀려 많이 낮아지는 것을 알 수 있으며 이것은 기상의 흐름기의 영향과 피 험자의 신체적으로 인한 변화에 요구되거나 통여라 생각되어진다.

저속스윙군은 임상 1시간 경과 후 온도감이 약간하하게 유지되며 이것은 단계가 제외되어진
환경에 대하여 승용차 시각을 위해서 한다. Fig. 4에 의해서 기술하는 주변
적 영역을 나타내는데, 대부분으로 분류되어진
차 자동차들은 특정한 환경에서의 기술적
범위가 다르다. 이는 3개로 이루어진 영
용동작 중 각 부러짐이의 유의성가 있음을
알 수 있다.
각각의 부러짐은 연속된 영역과 기술적으로
세 분류 되어지며, 이러한 분류는 MST와 각
부루앙강을 이용하여 분석한 결과 바탕으로
서의 분류가 성립함을 2002년 하계 실험학
회에서 발표하여 논의하였다. 이러한 부러짐의 특
성을 평가자들의 성향이를 통해 다시 분류하
고 약도 생성기술을 통해 가정 만족할 수
있는 평가기준을 제공하기 위해 분석적
요인을 시행하였다.

![Image](image.png)

Fig. 4 Variation of Air velocity image

4.3 생활이력을 이용한 평가기준 도출

피험자 60명에 대하여 와 100개의 항목에 대
항하는 생활이력에 대하여 설문하였고 이러한
설문을 받은 대체로 혹은 이중 기출자를 제외
한 45명의 피험자를 통해 평가기준 도출을 위
한 분석을 시행하였다.

분석은 SPSS를 이용하여 진행되었으나 100
이 항목 중 상관관계 다변동량의 유의자가
가, 3개 항목을 선정하였다. 다음의 Table 7에
5개 항목에 대한 내용을 표시하였다.

<table>
<thead>
<tr>
<th>Occupation Experience</th>
<th>Pearson "r"</th>
<th>Item Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>석사(속도 X1)</td>
<td>-0.540</td>
<td>2</td>
</tr>
<tr>
<td>정신적능력(X2)</td>
<td>0.396</td>
<td>4</td>
</tr>
<tr>
<td>개발의 학생인도(X3)</td>
<td>0.402</td>
<td>3</td>
</tr>
<tr>
<td>전문학문상(X4)</td>
<td>0.502</td>
<td>2</td>
</tr>
<tr>
<td>참여하는 개별(X5)</td>
<td>-0.406</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 8에 100개 항목 중 추출된 5개 항목
의 내용은 나타내었다. 두개의 생활이력에 관한
설문문의 내용 중 1개의 유의자가 두개의 항목
동으로 구성되어지만, 이 때 유의수준 0.05 이내
에 위치한 항목만으로 되어있다.
Table 8 Contents of 5 question item

<table>
<thead>
<tr>
<th>번호</th>
<th>질문 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>일산의 식재 속도는 어떻게 변화합니까?</td>
</tr>
<tr>
<td>1. 1</td>
<td>빠르게 빠른다</td>
</tr>
<tr>
<td>1. 2</td>
<td>느리게 빠른다</td>
</tr>
<tr>
<td>2.</td>
<td>다음 빌딩의 열화는 어떻게 변화합니까?</td>
</tr>
<tr>
<td>2. 1</td>
<td>자주 이산화</td>
</tr>
<tr>
<td>2. 2</td>
<td>자주 이산화</td>
</tr>
<tr>
<td>3.</td>
<td>위치에 따라 자물쇠의 사용법을 어떻게 학습합니까?</td>
</tr>
<tr>
<td>3. 1</td>
<td>자주 이용</td>
</tr>
<tr>
<td>3. 2</td>
<td>때때로 이용</td>
</tr>
<tr>
<td>4.</td>
<td>보통 빠른 경로는 어떻게 학습합니까?</td>
</tr>
<tr>
<td>4. 1</td>
<td>자주 이용</td>
</tr>
<tr>
<td>4. 2</td>
<td>시간을 절약한다</td>
</tr>
<tr>
<td>5.</td>
<td>실수하는 계산은 어떻게 학습합니까?</td>
</tr>
<tr>
<td>5. 1</td>
<td>보통</td>
</tr>
<tr>
<td>5. 2</td>
<td>빠른</td>
</tr>
<tr>
<td>5. 3</td>
<td>오기들</td>
</tr>
<tr>
<td>5. 4</td>
<td>계산</td>
</tr>
</tbody>
</table>

심각도를 이용하여 도출한 도출식을 유도하였으며,
Y값의 각 영역에 대하여 제의적 관계가 선형화된다는 45.5의 성평 이론을 도출식에 다시 정의하여 결과값을 정상한 결과 성
관도는 0.64로 나타났으며, 이는 도출식이 어느 정도 정확하다는 것을 맡게 한다.

\[Y = -0.270 \times X_1 + 0.099 \times X_2 + 0.134 \times X_3 + 0.251 \times X_1 - 0.105 \times X_5 + 0.55 \]

Fig. 5의 위의 도출식을 이용하여 455의 피험자 분포도를 나타냈다. 위의 식을 이용하였을 때 Y의 값이 0.6 이상일 경우 설문에 응답한 분포가 가운데 분포의 비중이 적절하게 일정하여 Y값이 0.6~1.1 사이에서의 중속
스밀을 그리고 1.1 이상일 경우 고속스밀이 섭
탕은 통한 결과 적합하다고 사료된다.

5. 실험

본 실험의 결과와 일치하여 피험자마다 자
신이 선호하는 기류의 형태가 존재하며 이 기
류의 형태는 피험자의 생활양식이나 체질에
따라 적절함을 느끼는 정도가 다를 수 있다.

Fig. 5 Subject’s distribution chart who use deduction

본 실험은 부산지역의 20대 남녀의 대학생
을 이용하여 적절히 세부실습을 통하여 나타
난 결과에 구체적이고 피험자의 나이에 대하
여 적합한 실험이었다. 이를 연령별과 지역
적인 차이를 고려하여 데이터 페어리므로
만 한국인의 체질과 생활양식을 고려한 적절
의 성형기류를 제공한 것이라 생각된다.

참고문헌

1. Tanabe, "Thermal Comfort Requirements in Japan", Ph.D. Waseda University, 1982
2. ASHRAE, Handbook Fundamental, Chapter 8, pp.7-8 ASHRAE, 1993