근접장 측정을 위한 나노 슬라이드 결합 나노 탐침의 제작

Fabrication of Nano-slide Integrated Nano-probe for Near-field Optical Measurement

임상엽, 최문구, 박승한
연세대학교 물리학과
syim@phy.a.yonsei.ac.kr

근접장 광학 탐침은 근접장 광학 현미경의 핵심요소이다. 매우 다양한 탐침이 제작되어 사용되고 있지만 이 가운데에서 실제로 널리 사용되는 근접장 탐침은 잠아들거나 식각하는 방식으로 첨단부를 루족하게 핀 후 수립 내지 수백 나노미터 직경의 개구 만을 남겨두고 금속 코팅한 광섬유 탐침이다. 그리
나 광섬유 근접장 탐침은 잘 알려져 있는 빛가지 단점이 있다. 우선 20~30°의 각도로 루족해지는 기
학적인 모양과, 깨지기 쉬운 유리 재질로 제작된 데 기인하여 내구성이 떨어진다. 또한 개구 각도가
작기 때문에 도파되는 빛이 개구에 도달하기 힘든 이전부터 cut-off 되므로 광 전달율이 매우 떨어
다. 라 100nm 직경의 금속 코팅 광섬유 탐침의 경우 입력광의 10⁻⁵ 정도만이 개구를 통해 출력된다. 그러
고 광섬유 탐침에 국한된 사항은 아니지만 탐침은 근접장 영역에 진입시킨 후 시료와 탐침 간의 거리를 유
지시키기 위해 매우 복잡한 거리 유지 장치가 필요하다. 이는 저곳에서의 나노구조 물질 연구나 소자
응용에 근접장 광학계를 적용시키는 데에 결림들이 된다.

본 연구에서는 나노구조 물질을 연구하기 위한 새로운 개념의 근접장 광학 탐침을 광 리소그래피를
이용하여 제작하고 그 특성을 연구하였다. 그림 1에 나타나있는 바와 같이 Si 으로 비등방 식각하면 Si 이
지나고 있는 비등방 식각 특성에 따라 Si (111)면이 식각 저지면으로 작용하기 때문에 Si (100) 면으로
식각 깊이가 깊어질 때 따라 바닥이 줄어들어 역 극화재 모양의 홈이 생긴다. 적당한 마스크 크기를
선택하면 광반에서의 개구 크기를 완벽히 조절할 수 있다. 한편 수질 나노미터 두께의 Si₃N₄ 막
으로 개구를 덮으면 그 막은 나노구조 물질을 옮겨 놓을 수 있는 나노 슬라이드 역할을 하게 된다. 본
연구의 나노 탐침 슬라이드는 나노구조 물질이 단순히 근접장 탐침 위에 옮겨가 있긴 하지만 자동적으
로 근접장 영역에 존재하기 때문에 매우 단순한 구조로서 근접장 측정이 가능할 뿐만 아니라 나노구조
물질의 광학적 소자 응용에 적절적으로 응용할 수 있다.

![Si₃N₄ film](image)

그림 1. 나노 슬라이드 결합 나노 탐침의 개념도
위와 같이 제작된 나노 탐침 슬라이드의 제작 공정 중 광 리소그래피 및 식각 예처를 줄이기 위해서 SOI (Silicon On Insulator) 기판의 15μm 두께 Si (100) 슬라이드를 사용하였다. Si 슬라이드 양면에는 PECVD로 SioN4막을 형성하였는데 아래면의 100nm 두께 SioN4막은 리소그래피용 마스크로서, 위면의 30nm 두께 SioN4막은 마지막까지 남아서 나노 슬라이드 역할을 하게 하였다. 마스크에 패턴을 새긴 후에 Si를 10wt.% KOH 수용액에 담가 비등방 식각을 수행하였다.

제작된 나노 탐침 슬라이드는 광학현미경과 주사 전자현미경, 그리고 근접장 광학 현미경을 이용하여 특성을 연구하였다. 제작 결과 리소그래피 및 식각 중의 예처로 인해 다소 탐침 크기의 균일도가 떨어짐을 관찰하였으나 쉽게 이용이 가능한 광 리소그래피 및 Si 공정 작업을 통해 나노구조 물질을 올려 놓을 수 있는 나노 슬라이드 및 파장 이하 크기의 탐침 제작이 가능함을 확인하였다.

그림 2는 제작된 나노 탐침 슬라이드의 근접장 광 영상이다. 488nm Ar+ 레이저를 나노 탐침 슬라이드에 입사시켰으며, 100nm 직경의 광섬유 근접장 탐침을 이용하여 나노 탐침 슬라이드 재구의 근접장 광 신호를 측정하였다. 측정 결과 약 300nm 반지름의 유효 개구임을 확인할 수 있었다.