페트초 모드록 레이저의 주파수 안정화

Frequency Stabilization of Femtosecond Mode-Locked Laser

김덕봉 박창용 염진용 윤태현
광주파수 제어 연구단, 한국표준과학연구원, 대전시 유성구 도룡동1 ubkim@kriss.re.kr

페트초 모드록 레이저는 공진기의 왕복시간 푸리 mata 펜트초 폭을 갖는 움스를 발생시키고, Fourier 변환에 의해 주파수 공간에서는 일정한 주파수 간격 \(\Delta = 1/r \)을 가지는 불연속 스펙트럼, 즉 광빛 스펙트럼을 갖게 된다(1). 광빛의 간격, 즉 움스의 반복율, \(\Delta = v_{g}/l_{e} \)의 관계식에 의해 그룹속도(\(v_{g} \))와 공진기 길이(\(l_{e} \))에 의해 결정된다. 광빛의 간격을 고정시키기 위한 가장 일반적인 방법은 공진기 길이를 일정하게 유지하는 것이다.

본 논문에서는 높은 안정도를 가지는, 궁극적으로는 최소 주파수 표준기, RF 주파수 합성기를 이용하여 주파수 간격이 일정한 광빛 합성을 위한 연구 결과를 발표한다. 그림 1에서 보는 바와 같이 실험에서 사용된 Ti:Sapphire 레이저는 532 nm의 단일 광선을 갖는 Nd:YVO4 레이저에 의해 46 W로 pumping 되었으며, 2개의 프리즘을 사용하여 GVD(group velocity dispersion)을 보정 하였다. 전체 공진기 길이는 약 1.65 m로 주파수 공간에서 광범간의 주파수 간격은 약 90 MHz 이고, 움스폭은 대략 15 fs 이다. 펜트초 모드록 레이저 공진기 길이 변화는 pump 레이저 흐름에 의한 Ti:Sapphire 결정 자체의 온도 상승과 외부온도 변화에 기인한다. 본 연구에서는 펜트초 모드록 레이저의 공진기 길이를 두 주파수 영역에서 안정화 시킨다. 즉 온도 조절기를 이용하여 레이저 공진기 자체 변환을 안정화 시키고 (low bandwidth), 고안정도 RF 주파수 합성기를 이용하여 공진기 길이를 고속 제어한다 (high bandwidth). Pump 레이저에 의한 Ti:Sapphire 결정의 온도 상승 문제는 copper cooler를 설치하여 결정 에서 발생한 열이 쉽게 공랭 되도록 하였고, 외부 온도의 변화에 따른 영향을 줄이기 위하여 TEC (thermo-electric cooler)를 이용하여 base plate의 온도를 24.5 C로 일정하게 유지하도록 하였다. 그림 2는 모드록을 유지한 상태로 14시간 동안 base plate의 온도와 움스 반복율의 변화를 측정한 결과이다. Base plate의 온도변화는 약 20 mK 정도였고, 이러한 온도 변화에 따른 전체 공진기 길이는 약 1.84 \(\mu \)m 가 변하였다. 이러한 조건에서 모드록 레이저의 움스 반복율 \(\Delta \)는 약 100 Hz 변화하였고 평균주파수는 90.389366 MHz 었으며, 그림 3에서 알 수 있는 것처럼 1초의 적분시간에서 움스 반복율은 1 Hz의 주파수 변화가 관측되어 움직동기가 가능함을 알 수 있다. 온도 변화에 따른 공진기 길이를 안정화시키기 위하여, 즉 광빛의 간격을 RF 주파수 표준기에 안정화시키기 위하여, 높은 안정도를 가지는 RF 주파수 합성기에 채용된 움스 반복율 \(\Delta \)을 움직동기 시킨다. 움스 반복율 \(\Delta \)를 그림 1에서와 같이 고속의 APD(avalanche photo diode)를 이용하여 측정한 후 광대역 위상 검출기에 의해 RF synthesizer와의 위상차를 전압으로 검출한다. 두 신호의 위상차를 비교하는 전압심호를 이용해 PLL(phase lock loop)를 구성하여 공진기 거동을 부착하고 있는 PZT(piezo-electric translator)가 위상차를 보정하도록 함으로써 공진기 길이를 일정하게 하였다.

현재 내부 공진기에서 그룹 속도와 움직동도의 차이에 의해서 발생하는 주파수 편이(carrier-offset frequency) \(\delta \)를 air-silica 메세구조 정성유용 이용한 self-reference(2) 방법에 의해 측정한 후 광빛의 간
격(Δ)과 위치(δ)를 RF 주파수 합성기에 동시에 위상동기는 연구가 진행중이다.

본 연구는 과학기술부의 장기적인 연구과제를 통한 지원으로 이루어졌다.

그림 1. 펨토초 모드록 레이저의 주파수 안정화를 위한 장치도

그림 2. 온도 안정화 후 레이저 base plate의 미세 온도 변화에 따른 필스 반복율의 변화

그림 3. 필스 반복율의 Allan 분산

참고 문헌