ABSTRACT

In this paper, we implemented the electronic moving aid system for safe walking of the blind.

An obstacle detecting of each sector used ultrasound and a distance measurement used time of flight. The alarm is designed to have a sound and a tactile function that can be selected on an user’s convenience. This system can detect an obstacle of upward, forward, downward and optimally warn to the blind with vibration, beep sound by applying warning algorithm on object detection.

Experimental testing and performance evaluation have been successfully carried out with a prototype cane, and the experiment shows the capability of the function to detect unknown objects within an assigned distance, under knees, over head height, and crushed puddles.

 또한, 장애이는 노인의 장애들을 감지하는 유용한 수단이나, 점거할 수 있는 범위는 장애이가 담는 거리 로 제한되어 있다는 단점이 있다. 

 최근 전자기술의 발달로 시각장애자의 일어바임 시각을 전자적으로 지원하기 위한 각종 연구가 이루어지고 있다.

 본 논문에서는 시각 장애인이 안전하고 효율적인 독립 보행을 제공하기 위하여 장애인이 탐지거리보다 먼 거리의 장애물을 탐지하여 장애물을 정보를 제공할 수 있는 전자기기기능을 연구하였다. 연구된 독립보행 지원 장치는 시각 장애가용 장기에는 부착할 수 있고, 보행에 필요한, 3범위(상방, 전방, 하방)에 대한 장애물을 감지하고 정보를 줄 수 있는 기능을 가진 시스템이다.

본론

1. 전자식 보행 지원

1-1. 보행 영역별 설정에 관한

 보행에서 안전을 보장하기 위해서는 그림1과 같이 3개의 영역에서 장애물을 유속을 인식할 수 있어야 한다.
상방 영역 A는 보행자 안전을 보호하기 위함이고, 선방 영역 B는 보행자 장애물과 충돌을 방지하기 위함이며, 하방영역 C는 노민의 동물이나 휴행된 보도의 상태에 대한 주의를 인지시키기 위함이다.

1) 전방 장애물의 검출: 그림의 B 영역에서 장애물의 위치를 검출하여 거리를 계산하고 장애물 위치에 대한 정보를 거리말로 형성하면 정보를 제공한다. 일반적으로 장애물의 보행속도는 정상인의 보행속도보다 느리므로 보행속도를 고려하여 정보설정거리로 100 [cm]이며, 100-200 [cm], 200 [cm] 이상으로 구분하여 정보하도록 하였다.

2) 상방 장애물의 검출: 영역 A에 존재하는 장애물을 검출하여 거리를 계산한다. 정보는 사용자 최의 20 [cm]을 기준으로 하여 정보유무를 결정한다.

3) 하방 장애물의 검출: 영역 C에 존재하는 장애물은 노민의 물질뿐만 아니라 이물 검출하기 위해서 센서의 거리값을 측정한 거리가 동적으로 설정된 문제 값보다 큰 경우와 작은 경우에 정보를 바꾸어 적은 경우는 물 물들고 큰 경우는 할 물 노민이나 덮친으로 완전히 정보를 한다.

1-2. 보행이동을 위한 정보 생성과 제공 방식

정보의 안전을 위하여 동물 유무에 대한 정보제공은 음향 정보와 표시정보를 제공한다.

1) 음향 정보: 전방, 상방, 하방에 위치하는 장애물에 대한 음향으로 경보를 하기 위해서 방향별과 거리별로 각각 다른 음성 코드를 사용하여 효과적인 정보를 제공하도록 하였다.

2) 표시정보: 시장이나 변화가 있는 시그널 감소에서는 음향자료보다 진동에 의한 충격이 효과적이다. 충격은 소형 모터를 구동하여 진동을 일으키며 진동을 추가하여 거리정보를 제공하게 설계하였다. 진동으로서의 사용은 안전에 한정되지만 제공한다. 진동의 정보는 거리가 가까워짐에 따라 진동주파수가 높아진다.

2. 시스템의 구성

시스템의 구성은 그림 2와 같이 초음과 거리측정부 및 정보를 진동 및 음성으로 출력하는 장치로 구성된 하드웨어부와 하드웨어를 구동하기 위한 제어부 그리고 3방향에 대한 정보 담당부로 구성된 소프트웨어 부로 구성하였다.

2-1. 하드웨어 시스템

하드웨어 시스템은 초음과 정보를 검출하기 위해 하드웨어 프로세서로 구성하였다. 그림 2와 같이 하드웨어 시스템은 주 제어기는 초음과의
2-2 소프트웨어 시스템

전자어동지원 시스템을 구동하는 소프트웨어 시스템은 그림 2와 같이 설계, 상방 그리고 하방의 장애물을 감지하기 위해 각각의 센서를 구동하고 수행된 신호로부터 3방향의 장애물을 판단하며 정보 알고리즘에 따라 정보를 제공하는 소프트웨어로 구성된다.

Fig 6. Forward warning

Fig 5. Block diagram of software system

1) 초음파에 의한 거리측정 방식
본 시스템에서는 거리 측정을 위해 초음파의 일관 비행 시간을 이용하여 거리 값을 계산하는 TOF(Time Of Flight)방식을 사용하였다. 상방,하방의 순서로 순차적으로 초음파를 방사한 후, 반사 신호가 검출되기까지의 시간을 카운트 한 값을 응용으로 읽으면 거리 정보가 된다.

2) 경보 및 알고리즘 적용 구성
모행 안전 영역에서의 장애물 감지와 그에 따른 경보는 경보 방향과 거리에 대하여 각기 다른 경우로 구성하였다. 이들 시스템 세부 구성은 전방 경보, 상방 경보, 하방 경보로 구성된다.

가) 전방 경보

나) 상방 경보

Fig 7. Upward warning

상방경보는 그림 7과 같이 장애물에 의해 설정된 상방 경보보다 적은 값이 검출되면 Beep음이 발생한다. 상방 경보는 Beep음만이 발생한다. 지평이 측정에서 180[cm]이상의 상방에 존재하는 장애물이 감지되면 플래그가 세트되고 경보를 실시한다. 장애물의 주변 다른 물체에서 반사되어 오는 반사신호에 의하여 오동작의 요인이 되므로 FIFO에서 최신의 데이터중 30%를 비교하여 거리값이 유사하고 경보조건에 해당할 경우에만 경보를 실시한다.
다) 하방 경보

하방 경보는 그림 8과 같이 1.5[m] 하방을 스캔하여 설정 거리보다 작은 거리 값이 2개 이상 비패에 저장되면 동작위치 간은 장애물로 판단하여 경보를 실시하고, 1.5[m]를 벗어나는 신호에 대해서는 할음 부분으로 판단하여 경보를 실시한다.

![Diagram](attachment:image.png)

Fig 8. Downward warning

결론

본 연구에서 설계 제작한 보행지원 시스템은 시각 장애자가 이동시에 닥치는 위험요소를 사전에 대책하고 보다 효과적으로 외화하는 목적까지 가도록 도와주며 최적의 보행알고리즘을 구현하는데 목적을 두고 설계되었다.

실험 결과, 진행 방향에 대한 설명, 진방 및 하방 영역의 보행 장애물을 효과적으로 감지할 수 있었으며, 음향과 진동으로 제시하는 적절한 경고 알림화도 효과적이었다.

초음과 보행 지원 장치는 비교적 간단하고 가격이 싸며, 휴대용으로써 실용화를 목표로 한 시스템으로서 단순성과 신뢰성에 중점을 두고 구현하였다.

따라서, 시각장애인과 보기 시스템을 이용하여 어느 정도의 보행 협력은 가능하다고 사료된다.

참고 문헌