Study of Ejector System for Pressure Recovery of Chemical Lasers

Sehoon Kim* · Chuntaek Kim** · Sejin Kwon*

ABSTRACT

In this study, the geometric design parameters of ejector system were investigated. The critical parameters were primary nozzle area ratio, 2nd-throat cross sectional area and 2nd-throat L/D ratio. At every geometry cases, primary pressure and secondary pressure were measured simultaneously according to secondary mass flow rate. From the results, the ejector starting pressure, unstarting pressure and minimum secondary flow pressure were found and we got the effect of geometric parameters to ejector performance and the way to optimal design of ejector system for chemical lasers operating. Also the experiments of changing secondary flow temperature were carried out.

1. 서 론

초음속 이젝터(supersonic ejector)는 초음속의 1차유동(primary flow)을 흘려주어 혼합에 의해 운동량 교환으로 저압의 2차유동(secondary flow)을 고압으로 수송하는 장치이다. 초음속 이젝터는 소형으로도 많은 양의 유량을 압축 또는 수송할 수 있는 특성이 있어, 오프로드 각종 캐프 및 압축기 그리고 냉동기 등에 많이 응용되어 왔고 지금은 고공환경부지항 및 화학레이저의 구동장치 등에 사용 된다(1,2,4).

본 연구에서는 화학레이저 구동용 초음속 이젝터 시스템에 관한 연구가 수행되었고 특히 이젝터 형상변수들의 영향 및 최적 설계 조건에 대한 연구가 중점적으로 수행되었다. 화학레이저 구동용 이젝터 장치는 기존의 초음속 이젝터 작동과 용융원리가 달라 혼합 연구와는 차이점이 있다. 특히 군사적 주목으로 응용될 경우 작은 크기의 이젝터 시스템이 설계 요구조건 중에 가장 중요한 조건이 된다. 이러한 경우 이젝터의 효율 및 압축비를 순해 보더라도 크기를 줄여야 하는 경우가 발생하게 된다. 본 연구에서는 화학레이저 구동용 이젝터 시스템의 원리를 이해하고 이를 통하여 최적의 설계를 위한 형상변수 효과에 대한 연구가 수행되었다.

* 한국과학기술원 항공우주공학 전공 (KAIST, Div. of Aerospace Eng.)
** 항공우주연구원 티보기계연구그룹 (KARI, Turbomachinery Research Dept.)
본 연구에서는 압축공기를 이용하여 1차유동을 확보하였고 이를 통하여 대기압의 공기를 빼어내는 환경 이젝터 시스템을 설계하였다. 혼합 정비는 이차목 형태로 설계 하였다. 화학레지가 구동용 이젝터의 설계 요구조건은 많은 유량과 낮은 2차유동 압력 그리고 작은 크기의 이젝터 시스템이다. 이러한 요구조건을 만족하는 최적의 혼합 변수를 얻기 위하여, 이젝터 성능을 좌우하는 중요한 변수인 1차유동의 노출 반복비와 이차목의 단면적 그리고 이차목의 가로세로 비와 영향을 확인하였고, 각 조건 조건에서 1차유동과 2차유동의 압력 등을 동시에 측정하여 성능평가를 수행하였다.

화학레지가 연속적으로 작동하게 되면 2차유동의 온도 즉, 반응용의 유동 온도가 1300 ~ 1400도까지 증가하여 이젝터의 성능이 변하게 된다. 따라서 2차유동의 온도에 대한 영향 연구가 필수적이다. 본 연구에서는 로터의 유량 조절기(mass flow controller)를 이용하여 2차유동 온도 상승이 이젝터 성능에 미치는 효과를 확인하였다.

2. 설계요구조건 및 설계

2.1 설계요구조건

화학레지의 발진 영역에서의 혼합 조건을 파악한 동물 구조의 속도에 결정하는 조건이다. 압력이 낮은 수록 발진 효율이 높아지는데 이것은 압력이 낮을수록 광자 발생이 용이하기 때문이다. 불화 중수소(DF) 화학레지의 발진 조건은 10torr 미만의 압력조건이다. 본 연구에서는 2차유동 압력 설계 요구조건을 50torr로 정하였는데, 이러한 이유는 발진 영역과 이젝터 사이의 5배의 압력 휴복을 시키는 초음속 다이저를 사용할 수 있다고 가정하기 때문이다.

또 다른 설계요구조건으로 2차유동의 유량을 2g/s로 하였다. 2차유동의 유량은 화학반응물의 유량으로 헤지 발진출력을 좌우하는 변수가 된다. 본 연구에서는 5%의 발전효율을 고려하여 염증의 불화중수소 레이저의 출력이 100W가 되는 2차유동 유량조건을 선택하였다. 이젝터 시스템의 크기를 줄이기 위한 방법으로는 같은 설계요구조건에서 낮은 1차유동 조건으로 이젝터를 구동하거나 유량을 작게 하는 것이므로 이에 대한 연구도 수행되었다.

2.2 설계

초음속 이젝터의 설계는 20년대부터 많이 수행되었다. 하지만 내부유동(interflow) 중에서 이젝터는 혼합(mixing) 및 충격파(shock wave) 그리고 난류(turbulence) 등의 복잡한 현상이 동시에 발생하기 때문에 이젝터 작동을 정확히 모사하기 어려운 점이 많다. 본 연구에서는 1차원 기체역학을 이용하여 1차 설계를 수행하였고 상용코드를 사용하여 설계를 검증하고 최종 설계를 확정하였다. 이차목의 단면적은 등속면(1sentrpic) 경로로 설계를 하여 압력 손실을 보정하였는데 본 연구에서는 최적 값을 150%로 보정하였다. 그림 1은 본 연구에서 설계된 초음속 이젝터의 최종 설계도이다.

3. 제작 및 성능평가

3.1 제작

본 연구에서는 이젝터 형상에 따른 이젝터 성능평가를 수행하기 위해 1차유동 노출 레이저, 이차목 단면적 그리고 이차목 가로세로 비율을 바꿀 수 있도록 제작하였다. 이 세 가지의 형태변수는 이젝터 성능에 가장 중요한 영향을 미치는
변수들이다. 또한 이젝터 작동현상을 측정하기 위해 1차유동 및 2차유동 그리고 이자목 각 부분에 압력을 측정할 수 있도록 제작하였다. 무엇보다 2차유동의 낮은 압력이 중요하며 제작 후 진공도 실험을 수행하였다. 그림 2에서는 제작된 이젝터의 사진이다.

3.2 성능평가
본 연구에서는 1차유동을 얻기 위해 부피 11m³, 최대 압력 25기압의 공기 압축탱크를 사용하였다. 성능평가는 두 가지 실험으로 수행되었다. 첫 번째는 1차유동과 2차유동이 대기온도 조건에서 이젝터 형성에 따른 이젝터 성능을 평가하였고, 두 번째는 하나의 이젝터 형상에서 부유동의 온도에 따른 이젝터 성능을 평가하였다. 첫 번째 실험에서는 각 형상에 대하여 여러 가지 2차유동의 유량조건에 따른 1차유동의 압력과 2차유동의 압력을 동시에 측정하여 이젝터 작동압력(starting pressure)과 작동중압력(unstarting pressure) 및 2차유동 최저 압력에 측정하였다. 두 번째 실험에서는 하나의 형상조건에서 2차유동의 온도를 변화시키며 좌표 같은 실험을 수행하였다. 이젝터 성능평가의 결과는 그림 3에서 그림 10과 같다.

Fig. 2 Manufactured ejector

Fig. 4 Starting pressure according to 2nd-throat cross sectional area

Fig. 3 Starting pressure according to primary nozzle area ratio

Fig. 5 Unstarting pressure according to primary nozzle area ratio
4. 결론

1차유동 노즐 면적비를 크게 하면 2차유동의 압력을 낮출 수 있기 때문에 유리하지만 작동압력과 작동물질압력이 높아지므로 초기 작동이 어렵고 낮은 압력으로 정상상태 작동이 어렵다. 이차유 단면적은 150%보다 10% 작게 하면 2차 유동의 압력을 낮출 수 있어 유리하고 작동물질 압력이 낮아 정상상태 작동이 쉽지만 이차유 작동압력이 높아진다. 이차유 가로세로 비가 8일
경우가 4일 경우보다 2차유동 압력이 낮았고 이
젝터 작동압력과 정상상태의 작동압력 모두 낮
아 보다 좋은 성능을 보였다. 이것은 이차로 내
에서도 혼합이 발생하기 때문에 가로세로 비가
줄수록 2차유동이 잘 형성할 수 있기 때문이다.
2차유동의 온도 효과는 크지 않았으나 높은
온도로 가수록 2차유동의 압력이 높아지고 작동
압력과 작동압력효과가 높아지는 경향성을 확인
하였다. 따라서 실제 화학저항용 이젝터를 설
계할 때 2차유동의 온도 효과를 고려해야한다는
것을 확인하였다.

주 기
본 연구는 한국과학기술원 전자광학과연구
센터를 통한 국방과학연구소 연구비 지원으로
수행되었습니다.

참고 문헌
1) 김세훈, 김형준, 김춘택, 권세진, “압축공기로
구동하는 소형 초음속 이젝터”, 춘계항공우주학
회 논문집 pp. 92 95, 2002
2) 김희동, 이준희, 우성훈, 최호규, “초음속 중
기 이젝터 시스템의 작동 특성에 관한 연구”,
한국항공공학회지, n5, v3, pp. 33 40, 2001
3) Javan A, Bennett W. R. Jr. and Herriott, D.
R., “Population Inversion and Continuous
Optical Maser Oscillation in a Gas Discharge
Containing He-Ne Mixture.”, Physical Review
Letters, v6, n3, pp. 106 11, 1961
4) DA-WEN SUN and Ian W. Eames, 1995,
“Recent Developments in the Design Theories
and Applications of Ejectors a review”, J. the
Institute of Energy, 68, pp. 65 79