구조화된 전자문서 생성을 위한 사용자 중심의 XML 문서편집
시스템에 관한 연구

차원준* · 황재각 · 이용준 · 정희경
*매개대학원 컴퓨터공학과 · 한국전자통신연구원

Study of XML document editing system that is creation for structural digital
document

Won-jun Cha* · Jae-gak Hwang · Yong-jun Lee · Hoe-kyung Jung
Dept. of Computer Engineering Paichai University, ETRI
E-mail : [jharm, hkjung]@mail.pcu.ac.kr, [jghwang, yjie]etri.re.kr

요 약

초기의 웹(Web)이 비구조적인 문서를 사용함으로써 발생하는 단점인 문서 처리와 교환 및 재사용성에 대한 해결책으로서 W3C(World Wide Web Consortium)에서 1998년 2월에 XML(eXtensible Markup Language)을 제정하였다. XML을 사용함으로써 기존 전자지식은 XML 기반 메시지 교환을 통한 기업간 전자거래 형태로 변화하고 있으며, 이러한 기업간 전자거래에 사용되는 XML 기반의 구조화된 전자문서를 저장 할 수 있는 승용성을 대한 필요성이 대두되었다.

이 논문에서는 XML 문서를 효율적으로 편집 및 저장 할 수 있는 사용자 중심의 XML 인스턴스 편집기와 XML 문서의 구조를鲣誼하는 XML 스키마 문서를 저장하기 위한 XML 스키마 편집기의 통합형 XML 문서편집 시스템에 관한 연구를 하였다.

ABSTRACT

Established XML at February, 1998 in W3C by solution about document processing and exchange and reusability to be shortcoming that early web happens using nonstructural document. Existing electron transaction is changing in electronic business form between corporation through XML base message exchange using XML. Necessity about solution that can masticate structured electron transaction of XML base that is used in electron transaction between corporation rose.

Structured electron transaction of XML base that is used in electron transaction in treatise that see hereupon efficiently study about XML document editing system that integrate XML Schema editor to masticate XML Schema document that define edit and XML instance editor of user central that can write a book and structure of XML document efficiently do.

키워드

XML, XML Schema, DTD, 전자문서

1. 서 론

WWW(World Wide Web)와 네트워크의 급속한 성장으로 기업간(B2B) 거래에도 많은 변화가 일어나고 있다. 그러나 전자거래를 위해서는 시스템간의 구조화된 정보를 교환할 수 있는 공동의 언어가 필요하지만, 기존의 전자지식의 비구조적인 형식의 문서를 사용함에 따라 검색, 교환 및 처리가 난해하였다. 이러한 문제를 해결하고자 W3C(www.World Wide Web Consortium)에서는 XML(eXtensible Markup Language)을 제정하여 문서와 데이터 교환이 쉽고, 구조적인 문서를 생성할 수 있도록 하였다. XML은 HTML(Hyper Text Markup Language)의 단순성과 SGML(Standard Generalized markup Language)의 정교함 등의 장점을 수용하여 사용이 쉽고, 기존 시스템에 독립적으로 문서를 교환할 수 있다. 특히, 범용성과 안정성 등의 장점을 가진는
XML 기반의 구조적인 문서를 사용하는 전자거래 및 전자물류처리 분야에서 중요한 역할을 담당하게 되고 있습니다. 하지만 전자거래에 사용되는 XML 기반의 구조적인 문서를 효율적으로 처리할 수 있는 국내 실용화에 몰두하는 연구개발이 이뤄지는 실정이다.

이에 본 논문에서는 전자거래에 사용되는 XML 기반의 구조적인 문서를 효율적으로 저장 및 접근할 수 있는 사용자 중심의 XML 문서 편집기와 유효한 XML 문서의 구조를 정의하는 XML 스키마 문서를 저장할 수 있는 XML 스키마 편집기와 동일한 XML 문서 패턴 시스템을 설계 및 구현하였다.

본 논문은 다음과 같이 구성된다. 1장에서 본 시스템의 이어들어 XML과 XML 스키마의 기본 개념을 살펴본 후, XML 문서 패턴 시스템에 대한 설계 부분으로서 전체 시스템의 구성과 XML 문서 편집기, XML 스키마 편집기에 대한 설계를 하고, 2장에서 본 시스템의 구현 내용을 기술하며, 3장에서는 결과 및 평가를 제시한다.

II. 본론

1. XML과 XML 스키마의 기본 개념

XML은 구조화된 문서의 표현과 응용 어플리케이션에서 효율적으로 처리하기 위해 1996년 W3C에 제안되었다. HTML과 같은 고정된 테그를 가진 형식이 아니라 사용자가 원하는 테그를 정의할 수 있는 확장성과 가동성이 일반 미크로소프트이다. 그리고 SCXML에 기본을 두고 있으며 단순화, 배우 유연성들의 테스트 형식을 지원할 수 있는 마크업 언어이다[1].

XML 스키마는 XML의 정합성을 극대화하기 위하여 어떤 형태의 XML 문서에서도 일관될 수 있는 내용을 정의하고 기술한다. 사용자는 이러한 작업을 위하여 DTD를 이용했지만, XML 스키마 문서는 테그를 구현하기는 많은 부분에서 한계를 가지고 있다. 그러나 XML 스키마와 XML 스키마는 달리 XML 문서 자체에서 생성된 문서 구조를 기술할 수 있게 함으로써, DTD보다 훨씬 강력하고 유연한 메커니즘을 제공하고 있다. XML 스키마는 DTD보다 많은 내용을 테그들로 제공하고 있으며, 현재 많은 언어들에서 사용되고 있는 레이지메커니즘의 표준도 가능하다. 또한 네임스페이스를 지원하는 데 이와 달리, 자동적으로 문서화(documentation) 할 수 있는 기능도 제공하고 있다[2].

2. 시스템 개개

본 시스템은 XML 문서 편집 시스템에서 사용되는 XML 문서와 XML 스키마 문서의 저장 및 편집을 효율적으로 할 수 있는 시스템이다. 그림 1은 본 시스템의 전체 시스템 구조도이다.

XML 문서 편집기는 처리되는 문서의 유효성 검증과 문서의 본질을 수행하는 문서 검증부와 밀접히 연동되는 DTD와 XML 스키마의 구조를 따르는 XML 데이터 구조를 자동으로 생성해주며 텔-equiv의 시스템을 구성한다.
2.3 문서 처리부
문서 처리부는 템플릿 생성부에서 생성된 DOM 객체 트리를 사용자 인터페이스를 통하여 문서의 논리구조에 접근하여 편집하도록 한다. 그림 3은 문서 처리부의 구성 요소 및 처리 관계를 나타낸 것이다.

그림 2. 템플릿 생성부의 구성 및 처리
템플릿 생성부에서 저장된 문서의 구조 정보를 이용하여 DOM 객체 트리를 생성하게 되고, 생성된 DOM 객체 트리를 이용하여 사용자가 효율적으로 문서를 편집할 수 있도록 JTree 컨트롤을 상속받은 XMLTreeView 클래스에 의하여 트리 인터페이스를 생성한다. 또한 박스트 노드를 직접 편집이 가능하도록 XMLOCellRenderer

그림 3. 문서 처리부의 구성 및 처리
클래스에서 처리할 수 있도록 한다. 그리고 JTable 컨트롤을 상속받은 속성 인터페이스를 통하여 나타나는 속성 목록에 대한 추가, 편집, 삭제 등의 처리가 가능하도록 한다. 원문, SourceView 이벤트가 발생하면 JTextArea 컨트롤을 상속받은 XMLSourceView 클래스에 의하여 원문의 직간접적인 편집이 가능하도록 한다.

2.4 XML 스키마 편집기
XML 스키마 편집기는 문서에서 제공한 XML 스키마 파일을 입력으로 받아 편집 및 저장을 한다. 이 XML 스키마 편집기는 W3C에서 2001년 5월에 권고한 XML 스키마 1.0 표준을 따라 설계되었다. 그림 4는 XML 스키마 편집기의 구성 요소 및 처리 관계를 보인다.

일편받은 XML 문서는 문서에 대한 접점 및 분석을 하여 문서의 구조에 맞는 DOM 객체 트리를 생성한다. 이렇게 생성된 DOM 객체 트리를 이용하여 구조 생성부에서 각 사용자 인터페이스에 맞도록 구성하여, 효율적인 문서의 접점 및 저장이 가능하도록 한다.

JTabbed 컨트롤을 이용하여 사용자가 원하는

그림 4. XML 스키마 편집기의 구성 및 처리
방식으로 편집할 수 있도록 원문 편집과 구조 편집의 인터페이스를 제공한다. 원문 편집은 JTextArea 컨트롤을 상속받은 XSDSource 클래스에서 원문에 대한 직접 편집이 가능하도록 한다. 그리고 구조 편집은 JCTreeTable 컨트롤을 상속받은 XSDTreeView 클래스에서 트리형 인터페이스를 생성하고, 문서의 구성 요소인 엘리먼트, 속성, 데이터타입 및 데이터스키에 대하여 처리하도록 한다.

편집이 끝나고 저장할 때, 저장이 끝나기 전에 문서의 검증을 다시 함으로써 문서의 구문적 오류를 체크하고, 오류가 발생하면 저장되지 않으니, 오류메시지를 출력하여 사용자가 오류내용에 대한 편집을 한다. 그 후에, 문서의 검증은 다시 수행하여 오류 발생하지 않는다면 문서를 저장하게 된다.

III. 시스템 구현
본 시스템은 IBM-PC 호환 컴퓨터(Pentium IV-2.4G)에서 개발하였으며, Windows 2000 Professional과 Service Pack 3의 운영체제 환경에서 개발언어로 Java 1.4.1에 JBuilder 8.0을 설치,
사용하여 구현하였다.

3.1 XML 문서 편집기

XML 문서 편집기는 문서의 구조 및 문법을 모른다는 사용자라도 쉽게 효율적으로 사용할 수 있도록 인터페이스를 구성하였다. 그림 5는 XML 문서 편집기의 구현 화면이다.

XML 문서 편집기는 사용자가 보다 효율적인 편집이 가능하도록 문서의 구조를 보면서 편집할 수 있도록 트리 인터페이스를 제공하며, 문서의 원문을 직접 편집하기를 원하는 사용자를 위한 원문 편집 인터페이스도 제공한다. 트리 인터페이스는 엘리먼트 목록을 제시함으로써 보다 쉽게 자식 엘리먼트를 상하이 사용할 수 있도록 하였다. 또한 속성에 대한 편집을 자세히 정립하고, 현재 선택된 엘리먼트의 속성에 대한 편집, 추가 및 삭제를 테이블에서 직접 수행할 수 있도록 하였다.

3.2 XML 스키마 편집기

XML 스키마 편집기는 XML 스키마 문서를 Well-Formed XML 문서로 그 형식에 보고 구현을 하였으며, 인터페이스는 엘리먼트나 속성의 삽입, 삭제, 편집이 용이하도록 구현하였다. 그리고 W3C의 표준인 XML 스키마 Version 1.0 원고안을 반영하도록 구현하였다.

그림 6은 XML 스키마 편집기의 구현 화면이다. 트리-테이블 인터페이스는 XML 스키마 문서의 구조를 보여주고 새로운 엘리먼트나 속성을 구조에 맞게 편집 할 수 있는 기능을 제공한다. 그리고 원문 편집 인터페이스를 제공하여 문서의 내용을 직관적으로 볼 수 있도록 하였으며, 간단한 편집 기능을 제공한다. XML 스키마 문서는 엘리먼트와 속성으로 구분할 수 있으며, 속성에 대한 데이터를 입력할 수 있도록 데이터 입력창을 작성으로 구분하였다.

본 논문은 전자기기에 사용되는 XML 기반의 구조적인 문서의 편집 및 저장을 효율적으로 할 수 있는 인터페이스를 제공하는 XML 문서편집 시스템을 설계 및 구현하였다.

본 XML 문서편집 시스템은 전자기기에 사용되는 XML 문서를 보다 쉽게 효율적으로 저장하기 위하여 DTD나 XML 스키마의 문법과 구조 정보에 대한 지식이 없이도 XML 데이터 구조를 자동으로 생성할 수 있도록 편리하고 기능을 제공한다. 또한, 현재 다양한 분야에서 사용되는 XML 문서를 사용자 지정된 인터페이스를 사용자 지정된 인터페이스를 사용자 지정으로 작성할 수 있는 XML 스키마 편집기를 구현하였다.

항후 본 연구는 전자기기에 사용되는 제반 기술인 편집 시스템 및 BPM5 시스템 등과 연동하여 좀 더 다양한 문서편집을 할 수 있으며, 지속적으로 기술적인 부분을 연구한다면 XML 기반의 다양한 분야에서 활용될 수 있을 것이다.

참고문헌

