본 논문은 웹 브라우저 만으로 원격화에 의한 설비의 모니터링과 제어를 할 수 있고, 서로 다른 시스템간의 호환성과 확장성을 지원할 수 있는 Java 플랫폼을 기반으로 응용 개발과 HTTP 프로토콜의 URL동신을 이용한 인터넷 원격제어 시스템 구축 방법을 제안하였다. 제안한 인터넷 원격제어 시스템을 실험하기 위하여 서버 PC와 RS-232 통신방식으로 연결된 μ-Processor를 통한 적류전동기의 속도 및 움도를 모니터링하고 제어하는 실험을 하였다.

ABSTRACT

Recently, the development of internet remote control system has been studied lively along with fast growth of internet. In this paper, we proposed the internet-based remote control and monitoring system using java platform. The apache web server that is now used worldwide was constructed for monitoring and controlling of an machine in administrator’s web browser. We solved the limitation on security which is the biggest problem of internet control system due to strong security setting in web server. As a result of experiment which is used in the proposed remote internet control system, several time-delay occurred in internet. However, correct control result could be achieved without an error. And this system monitored informations of a RPM, temperature and other condition in almost real time.

키워드
Internet remote control system, web server, Web browser, Monitoring, DC motor.

1. 서론

최근에 개발되어 사용화되고 있는 대부분의 인터넷 원격제어 시스템은 응용 개발과 HTTP 프로토콜의 특성상 통신상태를 계속 유지하지 않기 때문에 웹 브라우저만으로 원격화에 의한 설비를 모니터링하고 제어하는 것이 불가능하다. 이점은 보완하기 위해 통신상태를 계속 유지하는 트랜스포트 계층의 TCP/IP 프로토콜 병행하는 시스템을 제안하고 있다. 또한, 이러한 시스템 대부분의 소프트웨어는 특정 프로그램화를 바탕으로 개발하기 때문에 다른 시스템의 호환화 확장을 잘 지원하지 않는 경우가 많다.

따라서, 본 연구에서는 관리자가 웹 브라우저만으로 원격화에 의한 설비의 모니터링과 제어를 할 수 있고, 서로 다른 시스템간의 호환성과 확장성을 지원할 수 있는 Java 플랫폼을 기반으로 HTTP 프로토콜의 URL동신을 이용한 인터넷 원격제어 시스템 구축 방법을 제안하고자 한다. 웹서버를 구축하여 서버에서 기존의 시스템보다 더 높은 보안을 설정하고, 자바 서버와 웹 서버의 데이터변환을 실시간으로 강화할 수 있는 자바 애플리케이션을 설정하여 보안을 유지하면서 서버 측에 연결된 설비의 상태 변화를 즉시적으로 클라이언트 웹 브라우저에 전달할 수 있게 하였다. 또한, 웹 서버와 데이터베이스를 연동하여 현재설비의 각종 정보를 저장하고 웹 브라우저에서 쉽게 이용할 수 있게 하였다. 본 연구에서 제안한 인터넷 원격제어 시스템을
실험하기 위하여 서버PC와 RS-232 통신방식으로 연결된 μ-Processor를 통한 직접전동기의 속도 및 온도를 모니터링하고 제어하는 실험을 하였다.

II. 제한된 인터넷 원격제어 시스템

현재 상용화되어 있는 일반적인 인터넷 원격제어 시스템은 송신계층인 HTTP 프로토콜의 특성상 통신시간을 적게 유지하게 하기 때문에 웹 브라우저에서 즉각적으로 원격지에 위치한 설비를 모니터링하고 제어하는 것이 불가능하다[1]. 이것을 보완하기 위해 통신시간을 적게 유지하는 트래스프로토코스트의 TCP/IP 프로토콜 특성을 이용하여 WinSock API 등의 클라이언트 소켓 프로그램과 서버 소켓 프로그램을 별도로 작성하여 소켓통신 방식으로 원격지에 위치한 설비의 정보를 얻고 제어하는 방법을 병행하고 있다[2]. 이러한 시스템 대부분의 소프트웨어는 특정한 운영체제를 바탕 으로 개발되기 때문에 다른 시스템과의 호환성과 확장성을 잘 지원하지 않는 경우가 많다[3].

그림 1은 일반적인 인터넷 원격제어 시스템을 나타내고 있다.

그림 2. 제한된 인터넷 원격제어 시스템

III. 인터넷 원격제어 시스템의 구성

1. 제어회로의 구성

제어회로의 구성은 그림 3과 같이 직류전동기 Gate로, 80C196KC μ-Processor, Rotary Encoder, Temperature Sensor로 구성하였다. 직류전동기에 연결된 Rotary Encoder의 출력을 80C196KC의 Timer2 외부출력에 인가하여 RPM을 획득하고, Temperature Sensor의 출력은 AD Channel 0에서 A/D변환하여 전동기의 온도를 획득하였다. 80C196KC의 PWM Duty비를 조정함으로써 직류전동기의 속도를 제어하였다.

2. 전체 시스템의 구성

제어된 인터넷 원격제어 시스템은 크게 다섯 부문으로 이루어진다. 첫째, 인터넷시스템의 가능한 원격지에서 전동기를 제어·모니터링하는 Client PC이다. Client PC의 웹 브라우저를 통해 직류전동기를 제어·모니터링한다. 둘째, Client PC의 웹 브라우저의 제어 모니터링에 대한 요청을 처리하기 위한 웹서버이다. 셋째는 직류전동기의 속도를 제어하기 위한 제어회로이다. 넷째는 제어회로의 각종 작업을 구현하기 위한 에이전트로그램이며, 마지막으로 웹서버와 에이전트로그램을 연결하기 위한 데이터베이스로 구성하였다.

- 302 -
3. 제에프로그램

제에프로그램은 데이터베이스와 제어회로 사이에서 제어회로에서 데이터베이스에 저장하는 역할과 데이터베이스의 제어정보를 감시하여 제어정보가 변경되면 제어회로로 제어 값을 출력하는 역할을 하는 프로그램이다. 제에프로그램은 실행하던 타이머의 시간을 발생하고 이 타이머의 시각에서 연속적으로 데이터를 처리하게 된다. 제어회로로부터 RS-232 Port을 통해서 진동기의 RPM, 속도를 얻어서 데이터베이스 Table의 테이프에 저장한다. Table2 테이프를 계속 감시하여 제어정보가 변경되면 RS-232 Port으로 제어값을 출력하여 80C196K로 인하여 PWM 제어 값을 변경함으로써 진동기의 속도를 제어한다.

그림 4. 전체 시스템의 구성

Applet2는 Client PC에 의해 제어정보가 변경되던 이벤트창을 발생하고 이벤트에 의해서 변경된 제어정보가 Servlet2에게 전달된다. Applet2로부터 변경된 제어정보를 받은 Servlet2는 데이터베이스 Table2의 제어정보를 변경 후 저장한다.

그림 6. 웹 프로그램 Flowchart

IV. 실험 및 고찰

본 논문에서는 제안한 인터넷 원격제어 시스템을 실험하기 위하여 아프리카 텔레비전, 텔레비전 및 안전과 제어프로그램을 실행시킨 후 인터넷 원격제어 시스템을 구현하였다.

그림 7은 본 논문의 인터넷 원격제어에서 관리자 인증절차를 위한 로그인 화면을 나타낸다.
그 루키 값을 이용해서 로그인을 거치고 접속했는지 를 판별하여 제어 및 모니터링의 사용권한을 부여한 다. 루키 값은 클라이언트 PC에 파일이나 브라우저 에서 사용되는 메모리 공간에 저장되며, 그 유 효기 간은 임의로 설정이 가능하나 본 논문의 실험에서 는 웹 브라우저의 종료시에 사라지게 하였다.

그림 8. 모니터링 페이지

그림 8은 모니터링의 권한만 가진 권리자ID로 로그 인한 것을 때의 웹 브라우저 화면을 나타내고 있으며, 이 웹페이지에서는 Applet1만이 실행된다.

그림 9. 제어 - 모니터링 페이지

그림 8의 제어 - 모니터링 권한을 가진 권리자ID 로 로그인한 것을 때의 웹 브라우저 화면을 나타내고 있으며, 이 웹 페이지에서는 Applet1과 Applet2가 모두 실행된다.

제어정보는 8개의 버튼을 늘리 변경하게 하였다. 각각의 버튼을 누르면 반면에 해당하는 제어정보가 서버의 제어정보화 Table2에 저장된다. 제어 프로 그램은 제어정보 제어정보의 변경여부를 계속 감시하여 변경될 값에 상응하는 PWM Duty비율 제어회로를 통해 출력하며 제동기의 속도를 제어하였다.

본 논문에서 제안한 인터넷 원격제어 시스템을 이용하여 인터넷이 가능한 PC망, 가정용, LAN으로 인터넷과 연결된 장소의 클라이언트 웹 브라우저에 서 구현한 결과 인터넷 상에서 약간의 시간이 발생하였으나 오차 발생 없이 정확한 제어결과를 얻을 수 있었으며 RPM과 속도를 즉각적으로 모니터링 할 수 있었다.

V. 결 론

본 연구에서 제안한 인터넷 원격제어 시스템을 구현하여 다음과 같은 결과를 얻을 수 있었다.

1) 제안된 인터넷 원격제어 시스템은 웹서버에서 루키 설정, 접근제한 설정, 자바 소스파일을 전자시명 하는 방법을 이용하여 기존의 시스템보다 높은 보안 설정을 할 수 있었다.

2) 자바 애플리케이션 서블릿을 연동시킴으로서 보안을 유지하면서 서버측에 연결된 전동기의 RPM과 속도를 즉각적으로 클라이언트의 웹 브라우저에서 모니터링 할 수 있었다.

3) 웹 브라우저에서 전동기 속도제어를 실행한 결과 인터넷 상에서 약간의 시간이면 발생하였으나 오차 발생 없이 정확한 제어결과를 얻을 수 있었다.

4) 본 연구에서 제안한 데이터베이스를 통한 웹 프로그램과 제어프로그램의 연결 방법은 실비에 대한 정보들 저장하고 이용할 수 있어 자주 약간의 연구가 진행된다면 중소사업장에서 유용하게 작동할 수 있으리라 사료된다.

차후 통신 지연시간의 정확한 측정과 보안설정에 대한 지속적인 연구가 필요하다고 사료된다.

참고문헌