본 논문은 신경망을 이용한 간섭 신호 제거로서 복합 다층 피셀트론에서 DS/SS 동 통신에서의 수신된 신호를 억제하고 향상압고리즘을 이용하여 감소하는 것에 대하여 연구한다. 수신 신호가 일정한 수치를 갖는 통신에 전송하기 위하여 신경망을 이용한 새로운 편 가중치 경신 제어 방법을 제안한다. 작용 횡단선 필터는 신호신호의 차별없이 발생하는 신호 신호간 간섭을 억제하기 위해 LMS 알고리즘을 사용한다. 이 알고리즘은 원하는 응답과 실제 출력값의 차이 에러를 이용하여 편 가중치 조절 메커니즘을 통해 편 가중치를 개선함으로써 효과적으로 감소를 제거하였다.

본 논문은 상호 간섭 간섭을 효율적으로 억제해 기존의 LMS 알고리즘에 다중 채널 신호의 효율을 강화한 새로운 BISP 알고리즘을 제안하였으며, 제안된 알고리즘을 통해 편 가중치 계산이 보 다 효율적으로 이루어질 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러 의 수렴 특성이 기존 LMS 알고리즘을 이용한 수렴특성보다 훨씬하였다 것을 나타내었다.

1. 서론

직렬 대역 확장(Direct Sequence Spread Spectrum; DS/SS) 통신 방식은 처리 과학의 높임으로써 간섭 신호에 대한 성능성능을 항상시킬 수 있어 널리 이용되고 있다. 그러나 현실적으로 제한된 대역과 기술적인 한계로 인하여 처리 과학이 제한된다. 따라서 처리 과학에 비해 가능한 간섭 신호가 존재할 때에는 성능 향상을 위해 간섭 신호 제거를 위한 신호 점출이 요구된다. 채널 등장기는 두가지 성분의 필터로 구성되는데 하나는 정합 필터를 이용함으로써 두가지 성분의 간섭을 제거하며, 다른 하나는 상호 간섭 간섭을 제거하기 위해 적용 횡단선 필터를 사용하는 것이다. 이를 횡단선 필터에 실제로 점별과 이상적인 출력의 차이 에러를 이용하여 편 가중치 조절 메커니즘을 통하여 에러를 효율적으로 억제하는 LMS(Least Mean Square) 알고리즘을 제안하였다. 이 알고리즘을 이용해 수신신호 신호의 간섭을 효과적으로 억제하는 방법을 제안하였다.
BP(Back Propagation) 신경망 알고리즘을 조합함으로써 텐 가중치 생성을 통한 평균 자동 메 크리의 수렴속도를 개선하고자 하였으며, 컴퓨터 시뮬레이션을 통해 BISP 알고리즘을 이용한 수렴특성이 LMS 알고리즘과 비슷한 수렴특성을 보여주면서 입증하였다.

II. 적용 횡단선 필터의 텐 가중치 경신

적용 횡단선 필터는 그림 1(a)와 같이 두 가지의 기본적인 처리과정으로 구성된다. 첫 번째는 필터링 처리로서, 필터 입력의 집합에 의해 생성되는 횡단선 필터의 출력을 계산하여 실제적인 출력과 원하는 출력을 비교하여 에러를 추정하는 것이다. 두 번째 처리과정은 적응 처리과정으로 추정된 에러를 이용하여 필터의 텐 가중치를 적응적으로 조정한다. 적응 필터는 최적 필터를 위해 기존 프레임을 원하는 응답 $d(n)$에 계정하여, n 번째에서 텐 가중치의 벡터는 $w(n)$으로 표시하고 필터 출력에서 부합되는 원하는 응답의 배치는 $d(n) \cdot w(n)$으로 나타낸다.

그림 1의 적용 횡단선 필터 구조를 고려하면, 필터 출력의 수식의 $d(n) \cdot w(n)$는 입력 신호 벡터 $x(n)$의 필터가중치 벡터 $w(n)$으로 구성된 다음의 식 (1)을 만든다.

\[
\begin{align*}
\hat{d}(n) & = \sum_{i=0}^{M} w_{i}(n) \cdot x(n-i) \\
\end{align*}
\]

(1)

여러 신호 $x(n)$는 요구하는 신호 $d(n)$의 횡단선 필터 출력 $\hat{d}(n)$의 각 성분으로 나타난다. 따라서 LMS 알고리즘을 이용할 수 있는 가장 일반적 끝까지 이전의 텐 가중치 조정 벡터를 수식으로 표현하면 $w(n)$의 식이 정리된다.

\[
\begin{align*}
\Delta w(n) & = \mu \cdot (d(n) - \hat{d}(n)) \\
\end{align*}
\]

(2)

그림 1. 적용 횡단선 필터의 가중치 조절 블록도

III. BISP 알고리즘을 이용한 수신기

2.1 BISP 알고리즘의 구조

BISP 알고리즘을 이용한 적용 BISP 구조에서 수신기가 하는 노드에 대한 입력대와 하나 이상의 노드 출력, 두 이상의 노드 출력으로 구성된다. 수신 신호 $r(i)$가 입력되면 칠 주기 (T_0)만큼 지연되어 첫 번째 입력 값을 x, y의 변수로 추적하며 거기에 가중치 w가 고정된다. 두 번째 입력은 첫 번째 입력 값에 의한 출력 값이 두 번째 입력 값에서 되돌려 x, y값들의 매개 변수가 증감을 가지면서 다음층의 입력값이 된다. 각 출력에는 입력 x, y값의 H경로를 통해서 다음층의 입력값이 된다.
그림 3. 신경망 구조

다계층 폐쇄형 은닉 계층 \((l + 1) \)번째 계층에서의 입력과의 관계는 \(p \)번째 노드의 \(p \)번째 출력에 기초하여 결정하고 상수에 대한 높임의 가중치와 동일한 바이어스 항을 다른것으로서 식 (3)과 같이 나타낼 수 있다.

\[
\chi_i^{(l+1)} = \sum_{j=1}^{N_l} w_{ij}^{(l)} x_j + b_i^{(l)} \quad \cdots (3)
\]

여기에서도 원래의 응답 출력과 실제 신경망에서 출력값의 차로서 식 (4)와 같이 정의된다.

\[
e_i(n) = d_i - y_i(n), \quad i = 1, 2, 3, \ldots, N_M \quad \cdots (4)
\]

위 식에서 \(d_i \)는 \(i \)번째 노드의 출력 계층의 원하는 응답이고, \(y_i(n) \)는 \(i \)번째 노드 출력 계층의 실제 출력을 나타내며, \(N_M \)는 신경망의 출력 계층에서의 뉴런의 수이다. \(n \)은 알고리즘의 반복수를 나타낸다. 신경망의 평균 에너지 함수의 하한 비용함수로서 정의되는데 식 (5)와 같이 나타낼 수 있다.

\[
\zeta(n) = \frac{1}{2} \sum_{i=1}^{N_M} e_i(n)^2 = \frac{1}{2} \sum_{i=1}^{N_M} e_i(n)^2 \quad \cdots (5)
\]

기술기 감소 기법의 최적화를 사용하는 BP 알고리즘은 다계층 인식의 목소리 가중치를 반복적으로 수정하는 비용함수 \(\zeta(n) \)를 최소화함으로써 이루어진다. 가중치 갱신 방정식은 식 (6)과 같고, 갱신되는 음의 기울기에 비례하여 변화한다.

\[
w_i^{(p)}(n+1) = w_i^{(p)}(n) + \Delta w_i^{(p)}(n) \quad \cdots (6)
\]

식 (6)의 우변항은 갱신 기간으로서 식 (7)과 같이 다시 나타낼 수 있으며,

\[
\Delta w_i^{(p)}(n) = - \mu \nabla w_i^{(p)} \zeta(n) \quad \cdots (7)
\]

\(\mu \)는 학습율을 나타내는 변수이고, \(\nabla w_i^{(p)} \zeta(n) \)은 가중치 \(w_i^{(p)} \)을 변하는 비용함수 \(\zeta(n) \)의 기울기로 정의한다. 그러므로 식 (7)을 신경망의 은닉 계층의 계수로 확장하면 (M-1)번째 계층에서의 분수 가중치를 변하는 비용함수 \(\zeta(n) \)의 기울기는 식 (8)과 같이 다시 나타낼 수 있다.

\[
\nabla w_i^{(M-1)} \zeta(n) = \frac{\partial \zeta(n)}{\partial w_i^{(M-1)}} - j \frac{\partial \zeta(n)}{\partial w_0^{(M-1)}} \quad \cdots (8)
\]

또한 반복 \(n \)에서 계층 \((M-1) \)을 위한 \(p \)번째 노드의 \(p \)번째 노드에 연결된 분수 가중치는 식 (9)와 같이 나타난다.

\[
w_i^{(M-1)}(n) = w_i^{(M-1)}(n) + jw_0^{(M-1)}(n) \quad \cdots (9)
\]

위에서 나타낸 \(I, Q \)는 각각 실수와허수를 나타낸다.

또한 식 (8)에서 나타난 \(\nabla w_i^{(M-1)} \zeta(n) \)은 식 (10)과 같이 다시 나타낼 수 있다.

\[
\nabla w_i^{(M-1)}(n) = -\varepsilon_i^{(M-1)}(n) e_i(n) (u_i(n) - jv_i, q_i) + e_i(n) (v_i(n) - ju_i q_i) \quad \cdots (10)
\]

그리므로 식 (6)에서 나타낸 가중치 갱신 규칙은 식 (11)와 같이 다시 나타낼 수 있다.

\[
\begin{align*}
\varepsilon_i(n+1) & = \varepsilon_i(n) + \mu \nabla w_i^{(M-1)}(n) \\
\varepsilon_i(n) & = \varepsilon_i(n) - \mu \varepsilon_i^{(M-1)}(n) e_i(n) (u_i(n) - jv_i, q_i) + e_i(n) (v_i(n) - ju_i q_i) \quad \cdots (11)
\end{align*}
\]

또한 식 (3)에서 나타난 바이어스 향 \(b \) 갱신을 위한 규칙도 이와 유사한 방식으로 유도될 수 있다. 그러므로 \(p \)번째 노드 \((M-1) \)번째 계층에서 바이어스 향 갱신은 식 (12)과 같이 나타낼 수 있다.

\[
\begin{align*}
b_i^{(M-1)}(n+1) & = b_i^{(M-1)}(n) + \mu e_i(n) (u_i(n) - jv_i, q_i) \\
& + e_i(n) (v_i(n) - ju_i q_i) \quad \cdots (12)
\end{align*}
\]

지금까지 다계층 폐쇄형 신경망 계층에서 유도된 여러 식들을 LMS 알고리즘을 이용한 적응형선 필터의 편 가중치 조절 법이와 같은 것을 사용하여 식 (13)과 같이 대응되는 것을 알 수 있다.
\[w^{(M-1)}_f(n+1) = w^{(M-1)}_f + \mu A^{(M-1)}_f e^*_f(n) \]
(13)

IV. 컴퓨터 시뮬레이션 및 결과

적용 동화기에서 해을 생성하는 신호 분산 채널의 적응 동화를 위해 BISP 알고리즘을 이용하며, 모든 데이터는 실수 값으로 가정한다. 그림 3은 적응 동화기 시뮬레이션을 위한 코드 조건도 나타낸다. 그림 3에서 나타난 바와 같이 데이터 발생하는 채널 입력신호 \(u(n) \)을 발생시키고 상호 상호간 간섭(ISI)을 유발하는 채널 출력에 부가적인 레이저 가우시안 잡음 \(v(n) \)을 더하여 적응 횠득재정기에 입력되어 지도록 전용 발생기에서 만드는 신호로 도입하여 적응 동화기에 입력하기 위해 적응 동화의 동작을 제공한다. 여기에서, 발생된 데이터 신호 \(u(n) \)은 조정 가능한 Bernoulli 순열로 구성되어 채널에 입력되어 후의 채널 응답은 식 (14)과 같다.

\[h_n = \begin{cases} 1/2 [1 + \cos \left(\frac{2\pi}{W}(n-2) \right)], & n=1,2,3 \\ 0, & \text{otherwise} \end{cases} \]
(14)

그림 3. BISP 알고리즘을 이용한 적응 채널 동화기 시뮬레이션 플롯도

위 식에서 \(W \)은 채널의 선형 크기의 주변을 나타낸다. 또한, \(W \)은 동화기에서 레이지 저장된 행렬의 고유치 결정 \(\lambda(R) \)을 조정하고, 고유치 결정은 \(W \)로 증가한다.

임플로팅기에서 생성된 부가적 레이저 가우시안 잡음 신호\(u(n) \)은 평균으론 0.001의 가우시안 값을 가진다.

적용 횠득재정기의 상관 행렬을 나타내기 위해 시간 \(n \)에 대한 동화기의 첫 번째 행 입력은 식 (15)과 같다.

\[u(n) = \sum_{k=1}^{n} h_k a(n-k) + v(n) \]
(15)

식 (4)에서 모든 끝단계수는 실수 값이다. 그리고 동화기의 11개 행 입력 \(u(n), u(n-1), \ldots, u(n-10) \)에 대한 상관 행렬 \(R \)는 11x11의 대칭 행렬이다. 또한 임플로터 응답 \(h_k \)는 \(n = 1, 2, 3 \)에 대해 0이 아닌 값을 가지며, 잡음 처리 \(v(n) \)은 영평균 백색 가우시안이고, 분산은 \(\sigma^2 \)이다.

그림 4의 경우 LMS 알고리즘은 반복 계수가 많아 점축과 MSE가 체계적 낮아져 반면 BISP 알고리즘은 반복 계수가 많아 점축과 MSE의 반복 계수가 50이하부터 균등해진다. 그림 5, 6, 7에서는 알고리즘이 실행되기 위한 전처리, 주처리, 출력의 경우의 입력 값의 변화 상태를 보여주고 있다. 그림 6의 경우 LMS 알고리즘은 초기 변화가 정적이고 자유로운 차후 점차 낮은 값의 함수를 갖지만 BISP 알고리즘의 경우 변화 신호뉴턴의 특성은 균등한 반복계와 차로 값을 보여준다.
제어 알고리즘의 구현 및 이에 대한 성능 평가를 실시하여 기존의 가중치 수렴 제어 방법과 결과를 비교하였다.
작용 동화기에는 저널 해독을 바르게 잡기 위해 LMS 알고리즘을 사용하여 레이저수를 조절하는 작용 횡단선 필터를 이용하였다. 작용 레이저기판감지 센서를 통해 레이저 수준을 탐지하여 신호를 설정하는 방법을 제안하였다. 이 방식은 다가장 폭편차로 신경망 구조와 LMS 알고리즘을 사용하여 신호가 감지되면 신호의 결과를 확정 보여 할 수 있다. 또한 컴퓨터 시뮬레이션 결과를 통해 반복 학습에 대한 기존의 LMS 알고리즘과는 평균 거리에 따라 수렴 속도는 제안된 알고리즘의 수렴속도가 활선 빠르게 수렴되므로 수 있다.

참고문헌

V. 결론

본 연구에서는 원 신호에 대한 복원 신호의 깨달음 신호 속성과 제한 신호 사용에 극대화하기 위하여 복잡하고 가변적이며 예측하기 힘든 비선형 특성을 갖는 부호화기의 비트 발성을 재용할 때 영향을 미치는 변수와 매변수들의 결정에 신경망의 학습기능을 이용하여 효율적이고 적응적인