블렌드밀 가공에서 미변형 절두께의 이론적 해석

심기중(전북대학교 대학원), 서남섭(전북대학교 기계공학부)

주제어 : 블렌드밀, 절삭력, 절삭력 계수, 절삭단면적, 미변형 절두께, 절삭폭, 공구경로

본 논문은 블렌드밀 가공의 절삭저항 시뮬레이션 모델 개발을 위하여 요구되는 미변형 절두께의 계산을 위한 해석적인 방법을 설명하고 있다. 절삭가공시 발생하는 절삭력의 해석은 절삭단면적에 비결삭저항의 곱으로 표현하게 된다. 여기서 비결삭 저항(절삭력계수)은 절삭력 예측 모델의 개발에 중요한 요소이며 가공공의 재질에 따라 고유한 값을 가지게 된다. 절삭단면적은 미변형 절의 단면적으로 2차원 절삭의 경우 절삭깊이에 절삭폭을 곱하여 단순하게 계산되지만 3차원 절삭에서는 절삭단면적의 계산이 용이하지 않다. 이것은 블렌드밀 절삭기구가 다음과 같은 이유로 해석이 어렵기 때문이다. 첫째는 블렌드밀의 경우 모든 절삭이 반구형에서 이루어지며 공구경반, 헬릭스각이 공구 꼭부리 부터의 거리에 따라서 변하기 때문에 절삭속도, 유효헬릭스각, 공구 경사각이 공구반대 위치(공구 꼭부리가 공구반대 위치(공구 꼭부리로부터의 거리)에 따라 다르게 된다. 둘째는 공구의 최적경사와 테이블의 이송운동의 복잡적인 작용과 공구축(2) 방향의 이송 상변은 공구경로 및 절의 형태를 변화하게 한다.

블렌드밀 가공에서 절삭력, 절도, 공구변행, 형상오차, 공구피로 및 파손 등 수해되는 많은 연구들은 공구동력계를 이용한 측정된 절삭력 값 또는 절삭력 모델에 의한 예측된 절삭력 값을 기초로 하고 있다. 따라서 절삭력 계산에 요구되는 미변형 절두께 계산은 위에 열거한 많은 연구의 기초가 되는 부분이며, 가공장 절삭력, 공구변행, 형상오차 검증을 위한 예측모델 개발에 중요하다.

블렌드밀링에서 미변형 절두께의 계산은 몇몇 가정을 바탕으로 한다. 첫째는 블렌드밀의 공구경로가 원형이다. 실제 공구경로는 이송방향으로 약간 긴 트로코이드 공구경로를 가져게 된다. 그러나 블렌드밀에서 절삭속도는 이송속도에 비하여 매우 크기 때문에 공구경로를 원형경로로 가정하여 문제를 해석하고 있다. 둘째는 블렌드밀의 날 부분을 미세하게 절단하여 각각의 절단된 날이 2차원 절삭이론에 따른다. 블렌드밀링의 날 부분을 마치하게 절단하여 상하 반경차에 의해서 가공물에 각각으로 물리지 않는 경사절삭의 형태를 갖게 된다. 그러나 미세하게 절단한 것을 가정하여 2차원 절삭으로 단순화하여 해석하게 된다. 결국 절단된 미세한 날의 절두께를 계산하고 절삭폭(절거폭)을 곱하여 절삭면적을 얻게 된다. 절삭조건을 이용한 미변형 절두께 계산을 위하여 먼저 블렌드밀 공구형상과 생성되는 침착성을 해석하고 블렌드밀링에서 절두께의 정의 및 계산 방법을 보여주게 된다. 아래의 Fig. 1은 본 연구에서 사용한 미변형 절두께의 정의를 보여주고 있다.

```
Fig. 1 Definition of undeformed chip thickness
```

-91-