0.05 μM ananone also inhibited tyrosine hydroxylase (TH) activity at 24 h (62.0% inhibition of the control level). TH mRNA levels were also decreased by the treatment with ananone. Intracellular cyclic AMP level was decreased by ananone. However, ananone could not alter the Ca^{2+} concentration. Treatment with ananone at concentrations higher than 3 μM caused a cytotoxicity in PC12 cells as determined by MTT assay. Exposure of PC12 cells to non-cytotoxic concentration range of ananone (0.05 μM) in association with L-DOPA (20 μM, 50 μM and 100 μM) after 24 h or 48 h had a trend to decrease cell death compared with L-DOPA alone. These results suggest that ananone inhibit dopamine biosynthesis by the reduction of TH activity, and TH mRNA expression. In addition, ananone inhibits the cytotoxicity caused by cell death in PC12 cells. The signal transduction pathways and the mechanisms of the protective effects in PC12 cells need to be investigated further.

[PA1-15] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Suppression of IL-8 production by 18-beta-Glycyrrhetinic acid is mediated by inhibition of MAPKs and NF-kappaB
Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Institute of Digestive Disease, Wonkwang University School of Medicine

Intestinal epithelial cells can produce cytokines and chemokines that play an important role in the mucosal immune response. Regulation of this production is important to prevent inflammatory tissue damage. Glycyrrhiza glabra has been shown to inhibit inflammation. The aim of this study was to examine the inhibitory effect of 18-beta-glycyrrhetinic acid, a triterpenoid saponin of Glycyrrhiza glabra, on IL-8 production via mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kB) in TNF-alpha-stimulated human colon epithelial cells. HT29 cells were stimulated with TNF-alpha in the presence or absence of 18beta-glycyrrhetinic acid. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA), reverse transcription-PCR and Western blot analysis. MAPK activation and IkappaB/NF-kappaB expression were assessed by Western blot analysis. 18-beta-glycyrrhetinic acid suppressed TNF-alpha-induced IL-8 production in dose-dependent manner. Moreover, 18-beta-glycyrrhetinic acid inhibited activation of MAPKs (p38, JNK1/2, and ERK1/2), degradation of IkB, and nuclear translocation of NF-kappaB. 18-beta-glycyrrhetinic acid inhibits TNF-alpha-mediated IL-8 production by blockade in the MAPKs and NF-kappaB pathway in HT29 cells. (This work was supported by grant No. (R04-2002-000-00166-0) from the Basic Research Program of the Korea Science & Engineering Foundation.)

[PA1-16] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Antiviral Activities of L-FMAUS, a new L-FMAU derivative, Against Hepatitis B virus
Lee HaeSung, Ahn KwangHyun, Lee YoungChoon, Koo ChangHui
BUKWANG PHARM, Central Reserach institute

The nucleoside analogue, L-FMAUS was synthesized from L-FMAU which has been shown to have significant antiviral activity against hepatitis B virus (HBV). The anti-HBV activity and toxicity of the L-FMAU were examined by a cell culture system using a hepatitis B virus (HBV) producing cell line, HepG2 2.2.15. L-FMAU was assayed for the inhibition of HBV multiplication by measurement of HBV DNA and surface antigen (HBsAg) levels in the extracellular medium of HepG2 2.2.15 cells after an 8-day treatment. L-FMAUS reduced the secretion of HBsAg, as determined using HBsAg ELISA test, and decreased the levels of extracellular HBV virion DNA, as determined by PCR analysis. Our findings suggest that L-FMAUS may have potential to develop as anti-HBV drugs in the future.

[PA1-17] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Catalase protects cardiomyocytes via its inhibition of nitric oxide synthesis