acid analogues had anti-oxidant activity in a dose-dependent manner. Although phenylpropanoids did not inhibit purified tyrosinase activity, they significantly inhibited tyrosinase activity and melanin production in MSH-stimulated B16 melanoma cells. However, phenylpropanoids did not affect tyrosinase expression in MSH-stimulated B16 melanoma cells, which suggest that inhibition of MSH-induced melanin production was due to tyrosinase inhibition mediated via other signal pathways but not expression of tyrosinase. Phenylpropanoids also significantly inhibited both hyaluronidase and elastase activity, which suggests that phenylpropanoids may be used as whitening, water-conservative and anti-wrinkling agents. From the above results, phenylpropanoids appear to have anti-oxidant and whitening activity, particularly hydroxyl residue of aromatic ring plays an important role in antioxidant, whitening and water-conservative activity.

[PB1-4] [2003-10-10 09:00 - 13:00 / Grand Ballroom Pre-function]

Effects of Cordyceps ophiglossoides extracts on the neuronal death and memory deficits
Park Byung Chul*, Jin Da-Qing, Beak Sung-Mok, Lee Jae-Sung, Choi Hee-Don, Kim Jung-Ae
Department of Pharmacy, Yeungnam University, Kyongsan 712-749, South Korea, College of Natural Resources, Yeungnam University, Kyongsan 712-749, South Korea, Korea Food Research Institute, Seongnam-si, 463-746, South Korea

We investigated whether the mushroom extracts can protect neuronal death and ameliorate memory deficits in Alzheimer’s disease induced by β-amyloid peptide[β(25-35)]. Cellular model of Alzheimer’s disease was produced by using SK-N-SH human neuronal cells treated with Aβ. Treatment with 40μM Aβ for 48hours caused a 46% loss of cell viability. First, we examined the effects of 22 mushroom extracts on neuronal death using MTT assay. We found that 3 mushroom extracts increased viability of the cells from 46% to 87%. Especially, Cordyceps ophiglossoides, one of 3 mushroom extracts, suppressed the generation of reactive oxygen species(ROS). Results from the in vitro experiments suggested Cordyceps ophiglossoides contains effective ingredients which protect from Aβ induced neuronal death. So, we examined the effect of Cordyceps ophiglossoides on memory deficit in rats induced by Aβ. Initially the rats were given Cordyceps ophiglossoides extracts were intraperitoneally administered once a day for 3 weeks before Aβ injection. The rats were infused Aβ into the nucleus basalis using stereotaxic frame with Kofe microinjector, and then they were given extracts of Cordyceps ophiglossoides for two weeks until the water maze testing. The latency of Aβ-infused group was significantly long compared to untreated control group in the watermaze test. Cordyceps ophiglossoides only-treated group did not change the latency of untreated control group. However, Cordyceps ophiglossoides treated group significantly shortened the latency shown in Aβ-treated rats which was comparable to untreated control group. These results suggest that may be a good for prevention and treatment of Alzheimer’s disease.

[PB1-5] [2003-10-10 09:00 - 13:00 / Grand Ballroom Pre-function]

Expression of taurine transporter and taurine uptake in mouse osteoblast cell lines
Naomi Ishido1,2*, Emi Nakashima2, Yong-Sook Kang1
1College of Pharmacy, Sookmyung Women's University, Seoul, Korea, 2Department of Pharmaceutics, Kyoritsu College of Pharmacy, Tokyo, Japan, 1College of Pharmacy, Sookmyung Women's University, Seoul, Korea

Taurine is present in a variety of tissue and exhibits many important physiological functions in the cell. Although it is known that many tissues mediate taurine transport, its functions of taurine transport in bone have not been identified yet. In the present study, we investigated the expression of taurine transporter (TauT) and taurine uptake using mouse stromal ST2 cells and osteoblast-like MC3T3-E1 cells, which is bone related cells. Detection of TauT mRNA expression in these cells were performed by reverse transcription polymerase chain reaction (RT-PCR). The activity of TauT was assessed by measuring the uptake of [3H]Taurine in the presence or absence of TauT inhibitors. TauT mRNA was detected in these cells. [3H]Taurine uptake was exhibited in these cells, which was dependent on Na+, Cl- and Ca2+, and inhibited by β-alanine and γ-aminoo-n-butyric acid. These results suggest that taurine has biological functions in bone and some effect on the bone cells.