abnormality exists in cytochrome P450 (CYP)-mediated metabolizing function associated with polymicrobial sepsis and whether role of ascorbic acid (AA) in the alterations during sepsis. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). AA (100 mg/kg) was immediately injected intravenously after CLP. Liver and blood samples were taken 24 h after CLP for measurement of the extent of hepatocellular damage and activities of CYP-related isozymes. In addition, Western immunoblotting and RT-PCR analysis in liver tissue were conducted to investigate the expression of protein and mRNA levels for CYP isozymes. The level of serum alanine aminotransferase activity was markedly increased after CLP, which were suppressed by AA. Serum aspartate aminotransferase activity and lipid peroxidation level were significantly increased; an increase which was not suppressed by AA. Total CYP content significantly decreased but was restored by AA. NADPH-P450 reductase activity, its protein and mRNA expression were reduced after CLP; a decrease was prevented by AA. CYP1A1, 1A2, 2B1 and 2E1 activities also decreased. This decrease in CYP1A1 and 2B1 activity was prevented by AA, but not in CYP1A2 and 2E1. The mRNA levels of CYP2B1 and 2E1 significantly decreased, which was prevented by AA. Also, their protein expression decreased after CLP; a decrease was prevented by AA. Our findings suggest that AA reduces hepatocellular dysfunction, as indicated by abnormalities in CYP isozyme activities and its gene expression in sepsis.

[PB3-1] [2003-10-10 09:00 - 13:00 / Grand Ballroom Pre-function]

Phosphorylation by Ca²⁺/calmodulin-dependent Kinase II Regulates Binding of Capsaicin to VR1

Koo Jae Yeon°, Kim Sang Sung, Kim Man Soo, Park Seung Pyo, Shim Won Sik, Yang Youngduk, Cho Hwawon, Kim Mi Sook, Kim Byung Moon, Oh Uhtaek

College of Pharmacy, Seoul National University

VR1, a capsaicin receptor, is now known to play a major role in mediating inflammatory thermal nociception. Although the physiological role or biophysical properties of VR1 are known, its activation mechanisms by ligands are poorly understood. Here, we show that VR1 requires phosphorylation by Ca²⁺-calmodulin-dependent kinase II (CaMKII) for its activation by capsaicin. In contrast, dephosphorylation by calcineurin, leads to desensitization of the receptor. Point mutation of VR1 at two putative consensus sites for CaMKII fails to elicit capsaicin-sensitive currents with concomitant reduction in phosphorylation of VR1 in vivo. The mutant also lost the high-affinity binding of ³H-resiniferatoxin, a potent capsaicin-receptor agonist. We conclude that the dynamic balance between phosphorylation and dephosphorylation of the channel by CaMKII and calcineurin controls the activation/desensitization state by regulating the binding property. Furthermore, since sensitization by protein kinase A and C converges on these sites, phosphorylation stress in the cell appears to control a wide range of excitability in response to various adverse stimuli.

[PB3-2] [2003-10-10 09:00 - 13:00 / Grand Ballroom Pre-function]

Involvement of PLA₂ Isoforms in Muscarinic Receptor-Mediated sAPP Release and Store-Operated Calcium Entry in SH-SY5Y Cells.

HYE-WON CHOH, JIN-HYUNG KIM, SHIN-KYU CHOI, HWA-JUNG KIM

College of Pharmacy, Ewha Womans University

We previously reported that phospholipaseA₂ (PLA₂)-related pathway and capacitative calcium entry (CCE) via store-operated calcium channel (SOC) were involved in the regulation of muscarinic receptor-mediated sAPP release. We also observed that stimulation of muscarinic receptor associated with the inositol phosphate cascade resulted not only in increase of CCE but also in activation of PLA₂ in SH-SY5Y cells. In this study, we further investigated whether the PLA₂ isoforms differently regulate the muscarinic receptor-mediated sAPP release, and examined the relationships between activation of PLA₂ isoforms and CCE mediated by muscarinic receptors in SH-SY5Y cells. Treatment of the three isoform-selective PLA₂ inhibitors, [thioether amide-PC (TEA-PC; an inhibitor of secretory PLA₂, sPLA₂), haloenal lactone suicide substrate (Helss or BEL; an inhibitor of calcium independent PLA₂, iPLA₂), arachidonyl trifluoromethyl ketone (AACOCF₃; an inhibitor of calcium dependent
PLA₂, cPLA₂), all reduced muscarinic receptor-mediated sAPP release, suggesting that all of the three PLA₂ isoforms might be involved in muscarinic receptor-mediated sAPP release. OxoM (a muscarinic receptor agonist)-induced calcium entry was reduced by pretreatment of manosaiclaid (an irreversible PLA₂ inhibitor), TEA-PC and BEL, but not ACOCEF3. In addition, we observed that pretreatment of SKF96365 and Gd³⁺ (inhibitors of CCE) inhibited OxoM–induced cPLA₂ activation but showed no significant effect on iPLA₂ activation induced by OxoM. These results indicate that although both calcium-independent iPLA₂ and sPLA₂ isoforms do not regulated by CCE, they participate in the muscarinic receptor-mediated activation of CCE, and then the CCE induced by PLA₂ isoform activation involves in muscarinic receptor-mediated increase in sAPP release. On the other hand, cPLA₂ activation induced by muscarinic receptor activation could regulate muscarinic receptor-mediated CCE followed by sAPP release.

Immuno-modulation effects of cefodizime, a cephalosporin, in rat dendritic cells
Joo SeongSo, Won TaeJoon, Lee Dolk
Department of Immunology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea

According to recent reports, cefodizime (CEF), a third generation cephalosporin has the capability of chemotactic activity of neutrophil and monocytes and may act as the strong immuno-modulator. This study was planned to demonstrate whether CEF has the proposed effect on rat dendritic cells in vitro. Dendritic cells were taken from rat spleen tissue and cultured for a week. The obtained dendritic cells were treated with 10 µg/mL, 50 µg/mL, 100 µg/mL cefodizime and 101U/mL IFN-γ 1 µg/mL LPS. Through the studies, we found that cytokines, such as IL-1β, IL-6, IL-12, were induced by cefodizime in dendritic cells. This result indicated that cefodizime can be used as one of adjuvant therapies in diseases that need an immuno-boosts during a main treatment, i.e. cancer therapy. In conclusion, we recognized that cefodizime may induce the activation macrophage, NK cell, CTL, B cell in collaboration with activated dendritic cells. The present study suggests that cefodizime may extend its major role for antibiotics to multi-potential immuno-modulators.

Antitumor activity of Acanthopanax senticosus extract and its possible immunological mechaninism
Shin Kwang-Soon, Yoo Yung-Choon, Lee Dolk
Department of Food and Biotechnology, Kyonggi University, College of Medicine, Konyang University

Antitumor and immunomodulatory activities of an aqueous extract (GF100) of Acanthopanax senticosus was examined. In experimental lung metastasis of colon26-M3.1 carcinoma cells, intravenous (i.v.) administration of GF100 2 days before tumor inoculation significantly inhibited lung metastasis in a dose-dependant manner. The i.v. administration of GF100 also exhibited the therapeutic effect on tumor metastasis of colon26-M3.1 cells, when it was injected 1 day after tumor inoculation. In an in vitro cytotoxicity analysis, GF100 at the concentration up to 1000 µg/mL did not affect the growth of colon26-M3.1 cells. In contrast, GF100 enhanced the responsiveness to a mitogen, concanavalin A (ConA), of splenocytes in a dose-dependent manner. Peritoneal macrophage stimulated with GF100 produced various cytokines such as IL-1β, TNF-α, IL-12 and IFN-γ in an in vitro experiment. The macrophages obtained from the mice which were injected with GF100 (500 µg) 3 days before the assay showed significantly higher tumoricidal activity against tumor cells than that of the untreated macrophages. In addition, the i.v. administration of GF100 significantly augmented NK cytotoxicity to Yac-1 cells. The depletion of NK cells by injection of rabbit anti-asialo GM1 serum completely abolished the inhibitory effect of GF100 on lung metastasis of colon26-M3.1 cells.