The major active components of EGb 761, extract of Ginkgo biloba leaves, include flavonoid glycosides and unique diterpenes known as ginkgolides. Ginkgolides are potent inhibitors of platelet activating factor. In this study, we investigated antiinflammatory activity of ginkgolides on the Complete Freund’s Adjuvant (CFA)-induced mice. The ginkgolides were extracted from commercially available EGb 761. This extracting procedure was done by sequential treatments of the EGb 761 with chloroform, methanol, and water. HPLC and thin layer chromatography (TLC) analyses of the final water-soluble component (GH 415) revealed presence of the ginkgolides A, B, C, and J. For induction of arthritic inflammation, BALB/c mice were given CFA (50 μl/mouse/injection) into their footpads at days 2, 3, 4, and 5, respectively. The mice were treated with GH 415 (2 mg/mouse/injection) before and after CFA-administrations intraperitoneally at an interval of 3 days such as days 1, 4, 7, 10, 13, 16, and 19. Control mice group received Dulbecco’s phosphate saline (DPBS) instead of GH 415. Degrees of footpad swelling of these animals were then measured with plethysmometer. Results showed that the footpad swellings from all GH 415-treated mice were reduced up to 55% as compared to swellings from the DPBS-given control mice. This phenomenon of the reduction was maintained for the 33 day-measurement period as degrees of the footpad swellings all declined with or without the GH 415-treatment. These data indicate that the constituent of ginkgolides A, B, C, and J helps mice reduce inflammation.

[PB4-23] [2003-10-10 09:00 - 13:00 / Grand Ballroom Pre-function]

Ginsenoside Rg3 inhibits the production of interleukin-1β, tumor necrosis factor-α, and nitric oxide in rat microglia
Joo SeongSoo, Won TaeJoon, Hwang KwangWoo, Lee Dols®
Department of Immunology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea

Inflammatory responses from activated microglia are one of major causes of Alzheimer’s disease (AD). Particularly, proinflammatory cytokines (PC), such as IL-1β and TNF-α, and nitric oxide (NO) are correlated with AD by inducing the chronic inflammation in the brain. In the present study, we found that microglia are activated by lipopolisaccharide (LPS) and Abeta42 (Aβ42), and those activated microglia produced such repertoires up to 72h with a turning point at 24h. However, no dose dependency was found during the chasing time courses (6h to 72h). 100μg/ml. of Rg3 showed the most effective result in all study tools, Griess reagent, RT-PCR, and ELA assay. In conclusion, the fact that Rg3 downregulates the release of such proinflammatory repertoire suggests that the brain cell can be protected from cell stresses caused by PC and NO and from the cell damage arisen from the chronic inflammation.

[PB4-24] [2003-10-10 09:00 - 13:00 / Grand Ballroom Pre-function]

Enhanced apoptosis of IFN-γ treated macrophage in a depleted nutritional state
Cho SeongJun®, Rhee DongKwon, Pyo SukhNeung
Sungkyunkwan University, College of Pharmacy

Apoptosis has been implicated as an important mediator in immunosuppression observed in a depleted nutritional state. The recent report has indicated that IFN-γ treated bone marrow macrophages were protected from apoptosis induced by several stimuli in complete medium condition. However, our previous study demonstrated that IFN-γ treated peritoneal macrophages were enhanced the apoptosis in a depleted nutritional state. Therefore, we investigated the apoptotic regulatory mechanism of IFN-γ in malnutrition-induced macrophage. After peritoneal macrophages were isolated from C57BL/6 mice, purified macrophages were treated with IFN-γ in complete medium condition. The cells were further incubated in conditional medium condition. Apoptotic cells were determined by MTT assay, caspase-3 assay, PI staining and DNA fragmentation assay. Apoptotic cells of IFN-γ treated macrophages were increased as compared with those of untreated macrophage. Moreover, Caspase-3 activity and Bax expression in IFN-γ treated macrophages was increased, whereas Bcl-xL expression was decreased. Apoptosis of IFN-γ treated macrophages was not induced in complete medium condition. These data