NMR, 13C-NMR, HPLC and LC/MS/MS. The treatment of GSH and S-9 fraction with 1- or 2-bromopropane at a physiological condition (pH 7.4, 37°C) for 1hr produced GSH metabolites, which were identified by UV, HPLC and ESI LC/MS/MS analyses. In addition, time-response and dose-response effects of formation of GSH metabolites were investigated. The present results suggest that 1- and 2-bromopropane might form GSH metabolites at in vivo condition. Detection of GSH metabolites formed by 1- and 2-bromopropane at in vivo experimental models is on progress.

[PD1-11] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Practical Synthesis of α-Galactosyl Ceramide, KRN 7000.
Song Sovyoung, Jung Sungkyu, Kim Sanghee
Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yungun, Jongro, Seoul 110-460, Korea

Galactosyl ceramides play important roles in biological system as immunomodulator and essential constituents of membranes and cell walls. An efficient synthesis of α-galactosyl ceramide, KRN 7000, derived from marine sponge Agelas mauritianus as accomplished via a short reaction involving the coupling ceramide moiety and trichloroacetic acid as glyclosylation donor. We could synthesize α-galactosyl ceramide stereoselectivity without β-anomer formation on a multigram scale.

[PD1-12] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Design of Novel Ras Farnesyltransferase Inhibitors Based on Virtual Screening and Docking Studies
Jung Kang Rae, Park Hyung Yeon, Kim Chan Kyung, Lee Bon-Su
Department of Chemistry, Inha University

Inhibition of the protein-modifying enzyme farnesyltransferase is considered as a major emerging strategy in cancer therapy because of the involvement of farnesylated proteins in oncogenesis. We studied the structure-activity relationship of a novel class of CAAX-peptidomimetic farnesyltransferase inhibitors based on the benzophenone scaffold. FlexX docking of inhibitors confirmed reasonable fit of the molecule into the peptide binding site of farnesyltransferase. We also performed a virtual screening with LeadQuest chemical library databases to identify novel inhibitors of farnesyltransferase. Finally, detail docking studies were performed using these compounds which showed high scoring from the virtual screening experiment.

[PD1-13] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Synthesis of 2-phenyl-1,8-naphthyridin-4-ones
Im Chaeuk, Park Sang Min, Kim Yong Hyun, Chung Mi Ryang, Yim Chul Bu
Chung-ang University, College of Pharmacy

2-Phenyl-1,8-naphthyridin-4-ones had been synthesized for their cytotoxic activity. Substituted acetophenone was treated with NaH and diethyl carbonate to give ethyl benzoyletates, which was reacted with substituted 2-aminopyrididine and PPA to yield 2-phenylpyridopyridimidine-4-ones. These compounds was heated at 350°C in liquid paraffin to afford final compounds, 2-phenyl-1,8-naphthyridin-4-ones.

[PD1-14] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Wogonin and Its Analogs
Jang JinHee, Sin KwanSeog, Park Haell
College of Pharmacy, Kangwon National University
Our long-term research goals involve the SARs study and the synthetic procedure development of wogonin and its analogs. We investigated efficient synthetic pathways of wogonin and its bioisosteres in a large quantity to decipher the structural requirements for anti-inflammatory activities. We plan to serially delete or modify the 5,7-dihydroxyl groups of wogonin to observe the effects of the hydroxyl groups on anti-inflammatory activity. Also we modified the 8-methoxy group on a ring since it is known to be necessary for biological activity. In this presentation, we will report the synthesis and biological activity of wogonin bioisosteres with biologically equivalent functional groups of the 8-methoxy groups.

[PD1-15] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Developing a pharmacophore model for nonpeptide bradykinin antagonists
Park Hea-Young, Choi Su-young*, Lee Su-jin, Koh Hune Yeong, Pae Ae Nim
Ewha Womans University, KIST, Biochemical Research Center

Bradykinin is an autocoid related to acute and chronic pain and inflammation. The non-peptide bradykinin antagonists are of interest as novel anti-inflammatory therapeutics. To understand the structural basis for the bradykinin antagonistic activity and to guide the design of more potent compounds we analysed the three dimensional pharmacophore model. Seven active compounds very recently reported such as FR 167344, FR 173657, LF 160687, and bradyzide were used as our pharmacophore model analysis. The Catalyst softwares from Accelrys gave two pharmacophore models as a result. Our pharmacophore model 1 contained four features: (1) aromatic ring (2) H-bond acceptor (3) H-bond acceptor and (4) H-bond acceptor lipid. The pharmacophore model 2 was similar to model 1 with only difference in feature 1 as hydrophobic side chain instead of aromatic ring. Three compounds synthesized were fit to the pharmacophore model by 2-3 features. These compounds are less active than the seven compounds used for the model analysis. Compounds that fit better to the pharmacophore model in all four features will be suggested for structural optimization of synthesized compounds.

[PD1-16] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Studies on Biochemical Mechanism of DNA Alkylating Agents Tethered to Ligands for Retinoic acid Receptor
Byoung-Gu Yun*, Sung-Jae Pyun, SangMi Ji, Won-Hoon Ham, YoungJoo Lee, Hyun-Ju Park
College of Pharmacy, Sungkyunkwan University, Department of Bioscience & Biotechnology, Sejong University

Transcription factors (TF) can bind tightly to specific DNA lesions formed by some anticancer agents. The formation these TF:(drug-modified DNA) complex may disrupt expression of genes critical for cell survival, and it was proved to be one of biochemical mechanisms of anticancer activity. Based on this model, we have designed programmable DNA Alkylating agents that can also attract TF, especially nuclear receptors. As a model compound, we designed drug molecules, RA-mustard and Am580-mustard, that enable to bind both retinoic acid receptor (RAR) and DNA by using molecular modeling techniques, and synthesized them by connecting chlorambucil and ligand for RAR with a linker unit. We conducted thermal DNA strand breakage assay on drug-modified DNA, and confirmed the DNA adduct formation by drug. The interaction of drug with RAR was also identified by binding assay using RAR-overexpressed cell extract. To examine the effect of drug on gene expression, we tranfected the drug-modified plasmid DNA into the RAR-dependent luciferase reporter cell line. The presence of drug-DNA adduct diminished RAR-dependent luciferase expression in a dose dependent manner. The results revealed that our rationally designed agents follow the target mechanism in which the drug-DNA adduct can hijack RAR and disrupt the gene expression in RAR-abundant cell. The concept proved in this study would be applied to design other agents that selectively target cells abundant with specific disease-related TF.

[PD1-17] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]