Inhibition of LPS-Induced Nitric Oxide Production by Styrylheterocycles.
Kim Fun-Young', Lee Eunjung, Lee Minhee, Min Hye Young, Huh Sun Kyung, Lee Sang Kook, Kim Sanghee
Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yungun, Jongro, Seoul 110-460, Korea, College of Pharmacy, Ewha Womans University, 11-1 Daehyun, Seodaemun, Seoul 120-750, Korea, College of Pharmacy, Ewha Womans University, 11-1 Daehyun, Seodaemun, Seoul 120-750, Korea

Styrylheterocycles were synthesized as a novel class of inhibitors on nitric oxide (NO) production. Their inhibitory activities were evaluated using lipopolysaccharid-stimulated RAW264.7 macrophage cells. This series of inhibitors are suggested as lead compounds for the development of potent and selective inhibitors.

[PD1-18] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Synthesis of thiazolidinedione analogs
Yun Hyun-Jin', Cheon Seung Hoon
College of Pharmacy, Chonnam National University, Kwangju 500-757, South Korea.

Thiazolidinediones (TZDs) are a new class of compound that increase insulin sensitivity in type 2 diabetic patients. Thiazolidinediones (TZDs) act as ligands for a member of the nuclear hormone receptor superfamily, peroxisome proliferator-activated receptor-γ (PPAR-γ), which is highly expressed in fatty tissue and, moreover, has been shown to play an important role in fat cell differentiation. The strong interaction between the antidiabetic activity of TZDs and their ability to activate PPAR-γ suggests that PPAR-γ, through downstream-regulated genes, mediates the effects of TZDs. In this report, the synthesis of (5-[4-(2-biphenyl-4-yl)-3-methyl-oxazol-4-ylmethoxy]-benzyl)-thiazolidine-2,4-dione and its analogs are described.

[PD1-19] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]

Synthesis and properties of methylprednisolone-21sulfate sodium as a colon-specific prodrug of methylprednisolone
Kong HyeSik', Kim Inho, Kim YoungSoo. Choi Bohim, Kim HeeJung, Kim YoungMi
College of pharmacy, Pusan National University, Pusan 609-735, Korea

Corticosteroids have been used most frequently for inflammatory bowel disease. To reduce side effects by the systemic absorption, colon-specific delivery is highly desirable. We expected that conversion of 21-hydroxyl in glucocorticoids into a sulfate ester sodium will greatly increase the hydrophlicity, which consequently restrict the gastrointestinal absorption. Once delivered to the colon, sulfate ester will be hydrolyzed by the sulfatase originated from microbes and release the parent compound, glucocorticoids. In this study, we prepared methylprednisolone 21-sulfate sodium (MPS) and investigated its suitability as a colon-specific prodrug of methylprednisolone (MP). We compared the in vitro properties of MPS to that of prednisolone 21-sulfate sodium or dexamethasone 21-sulfate sodium. METHOD: MPS was obtained by reacting MP and sulfatotride triethylamine, and subsequently treating the product with NaCl solution. Stability in pH 1.2 and 6.8 buffer solutions and apparent partition coefficient in 1-octanol/pH 6.8 buffer were determined. Prodrug conversion was determined by incubating MPS with the contents of various segments of gastrointestinal tract of rats. RESULTS: MPS was stable and apparent partition coefficient of MP and MPS was 98.89 and 0.37, respectively. MPS was stable on incubation with the contents of the stomach or small intestine. With the cecal contents, MPS was decreased to 75% and 100% at 12 h and 24 h, respectively, producing MP 51% and 72% of the dose at 12 h and 24 h. The degree of A ring reduction and the effect of reduction inhibitors was greater for MP than PD. CONCLUSION: MPS was stable and expected to be non-absorbable in the GI tract and release MP in the cecum. It underwent reductive bioinactivation by the cecal contents to some degree, and yet it might serve as a promising colon-specific prodrug of glucocorticoids.

[PD1-20] [2003-10-10 14:00 - 17:30 / Grand Ballroom Pre-function]