Preparation of Enantiomerically Pure Chiral building block ((E)-4-(tributylstannanyl)but-3-en-2-ol) via lipase-mediated resolution

Lee Taeho, Ko Hyojin, Lee Hyesung, Kim Sanghee
Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yungun, Jongro, Seoul 110-460, Korea

Chiral building blocks have the importance in the pharmaceutical and agrochemical industries as well as in the development of rapid and efficient syntheses of bioactive compounds and natural product. Vinylstannane contains two synthetically useful functional groups (vinylstannane and allylic alcohol). The vinylstannane functional group can be used in C-C bond formation under a variety of conditions and the allylic alcohol functional can be used in hydroxyl-directed epoxidations, cyclopropanations, and sigmatropic rearrangements. We have been able to obtain enantiomerically pure (E)-4-(tributylstannanyl)but-3-en-2-ol by kinetic enzymatic resolution using a cheap and commercially available lipozyme.

Stereoselective Total Synthesis of (-)-Cytoxazone

Kim Ji Duck, Jung Young Hoon
College of Pharmacy, Sungkyunkwan University

We have developed the novel one-pot synthetic method for regioselective and stereoselective N-protected amines through the reaction of various ethers with chlorosulfonyl isocyanate (CSI). Also, we found a novel technique to compare directly the stability of carbocations in the solution phase and established the stability order of the various carbocations. And we reported the cleavage of benzyl and p-methoxybenzyl protecting groups of alcohols and phenols in the presence of other functional groups using CSI. Also, we established that our CSI reaction is a competitive reaction of SN1 and SN1 reaction according to the stability of carbocation intermediate. Now, we report a stereoselective total synthesis of the (-)-cytoxazone, a novel 4,5-disubstituted-2-oxazolidinone compound isolated from Streptomycyes species has shown cytokine modulating activity, base on the regioselective and stereoselective CSI reaction we developed. The total synthesis of (-)-cytoxazone was achieved in 6 linear steps from p-anisaldehyde. Key steps in this route are the regioselective and stereoselective introduction of N-protected amine group using our CSI reaction of anti-1,2-dimethyl ether and the subsequent regioselective cyclization of N-protected amino diol to give the 2-oxazolidinone unit of (-)-cytoxazone. We also found the optimum reaction conditions for the diastereoselective CSI reaction of anti- and syn-1,2-dimethyl ethers. The retention of configuration can be explained by the neighboring group effect. This synthetic method using CSI can be applied to the formation of various natural products with a more complex amine.

Studies Toward the Total Synthesis of Perhydrohistrionicotoxin

Ko Hyojin, Lee Taeho, Kim Shinae, Kim Sanghee
Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yungun, Jongro, Seoul 110-460, Korea

Natural histrionicotoxin, a substance isolated from the skins of the "arrow poison frog" and its fully hydrogenated derivative, perhydrohistrionicotoxin (pHTX), have been the subject of synthetic investigation because of their important neurophysiological activity and a unique framework. In this work, we could obtained the appropriately functionalized spiropiperidine compound as a formal precursor of perhydrohistrionicotoxin. An important feature of this synthesis is the creation of a stereoegenic center by using Ireland-Claisen Rearrangement, and Ring-Closing Metathesis (RCM).