120 minutes), Form 1 is 95.22%, Form 2 is 67.80%, Form 3 is 64.00% and Form 4 is 99.90%. Therefore, Form 4 of ceftriaxone sodium would be applied to enhance bioavailability. Each modification is also investigated after storage of 2 months at 52% and 0% humidity. All polymorphs except Form 2 of ceftriaxone sodium were not converted to another form at 52% and 0% humidity. However, Form 2 of ceftriaxone sodium was transformed to monohydrated form (Form 3 of ceftriaxone sodium at 52% humidity. Form 2 of ceftriaxone sodium is regarded as a metastable form.

[PE1-11] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Collagen electrospun chitosan-PLLA membrane for guided bone regeneration
Hyonjin Baek, Kyunghwa Kim, Jieun Jung, Juyeon Lee, young Ku, Chongpyung Chung, Seungjin Lee
Ewha Womans University, Seoul National University

Recently, the barrier membranes have been applied for regenerating bone surrounding peri-implant defects in guided bone regeneration (GBR). GBR membrane should provide mechanical support sufficient to withstand in vivo forces and maintain wound space for bone regeneration. The ability to exclude unwanted tissues or cells (connective tissue and epithelium) is needed. In addition large surface area is conductive to tissue ingrowth. The search for ideal materials that biocompatible, bioreabsorable and can support the growth and phenotypic expression of osteoblasts is a major challenge in the biomedical application for the repair of bone defects. In our study, collagen electrospun chitosan-PLLA membranes for GBR were fabricated by electrostatic fiber spinning. Fibrous meshes of collagen electrospun chitosan-PLLA membranes were composed of collagen nano-fibers (50-800nm) and chitosan micro-fibers (30-50μm). Chitosan fibers support sufficient mechanical strength and collagen fibers provide large surface area. We assumed that nano/micro-fiber composites have advantages of both nano-fibrous membrane and micro-fibrous membrane. PLLA membranes between the two nano/micro-fiber composite meshes have 2-10μm pore size pores were generated by an in-air drying phase inversion technique. collagen electrospun chitosan-PLLA membranes showed similar tensile modulus with Chitosan-PLLA membrane. After 1 days osteoblast incubation, cells were spindle-shaped and had several cytoplasmic extension or lamellipodia development. After 1 week of culture, membrane surface is partially covered with multi-layers of cells. Therefore, it is demonstrated that collagen electrospun chitosan-PLLA membranes has good cellular compatibility. Also, it might be beneficial to achieve significant bone augmentation as GBR.

[PE1-12] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Micro-and nanofibrous scaffold for enhanced cartilage regeneration
Lee Myung Hoo, Shim In Kyong, Hwang Jung Hyo, Ahn Hyun Jung, Lee Sang Hoon, Lee Myung Chul, Lee Seung Jin
Department of Pharmacy, Ewha Womans University, Department of orthopedic surgery, Seoul National University

Extracellular matrix(ECM) is composed of the ground materials(proteoglycan) and nano size diameter fibrous proteins(ex. collagens) that together form a composite-like structure. In this study, fibrous scaffold with biomimetic architecture based on collagen nanofibers interpenetrated in PLGA/chitosan microfibrous matrix. Chitosan was selected for its structure similarity to glycosaminoglycan and neutralizing capacity for PLGA acidic metabolite. Collagen nanofiber were prepared by electrospinning. Electrospinning fabricate ultra fibers ranging from 500-300 nm in a diameter, features a morphologic similarity to the ECM of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, and effective mechanical properties. The strategy of this scaffold design includes; 1) improvement of tissue compatibility of PLGA maintaining its mechanical strength and biodegradability, ii) enhancement of cell-matrix interaction provided by collagen nanofibers, iii) achievement of ideal biomimetic 3-D environment for chondrocyte culture and cartilage regeneration. Collagen nanofibers well incorporated into PLGA/chitosan microfibrous network. In micro-and
nanofibrous matrix chondrocytes well maintained spherical morphology and formed dense layer of cartilaginous tissue. In chondrocyte culture, cells attached selectively on nanofibers. Collagen nanofiber effectively induced chondrocyte migration on matrix and activated chondrocytes to secrete ECM proteins such as collagen type II.

[PE1-13] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Enhanced controlled transdermal release of quinuprazamine from the ethylene-vinyl acetate
Shin Sang-Chul, Kim Jin², Oh In-Joon
College of Pharmacy, Chonnam National University

In case of oral application of quinuprazamine, antidepressants, it may cause adverse effects such as diarrhea, nausea due to transient high blood concentration. Ethylene vinyl acetate (EVA) which is heat-processible, flexible, inexpensive material was used for transdermal drug delivery. The purpose of this study was to develop the new transdermal delivery system of quinuprazamine using EVA polymer matrix that can provide sustained release and avoid the side effects. The EVA matrix containing quinuprazamine was prepared by solvent-evaporation method. The release profiles of drug from the EVA matrix were studied as a function of temperature, drug concentration. Some kinds of plasticizers such as the citrates, phthalates, sebacates were used for making the pore and increasing the flexibility of EVA matrix. Also we used some types of penetration enhancer to increase the flux of drug through skin like the glycols, non-ionic surfactants, fatty acids. Permeation study using mouse skin was performed at 37°C using 0.02M-phosphate buffer as a receptor medium. In case of the plasticizers, diethyl phthalate showed the best effects. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the best enhancing effect. The polyoxyethylene 2-oleyl ether as an enhancer could be used for development of quinuprazamine-EVA matrix.

[PE1-14] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Effect of Dry Granulation Process on Flowability of Erdosteine
Wang Hun Sik², Kwon Min Chang, Shim Ji Yeon, Park Jun Sang
GL PharmTech Corp.

Erdosteine, an expectorant, has been known to show a very poor flowability. Furthermore, high dosing amount (300mg/cap) and bulk density make it more difficult to fill in a capsule less than No. 0 size as bulk state. We have studied the possibility of dry granulation process in purpose of getting a better flowability and manufacturing efficiency. A roller compactor was introduced for this purpose and the applicability of laboratory result into commercial scale instrument was also experimented. Roller compacting process was very favorable to obtain the granules with good flowability and improved density profiles. As a result of micrometric analysis the compacted granules showed nearly 2 – fold higher bulk and tapped density than a drug itself, which could enable to be filled even in No. 2 capsule. In addition, compacted granules represented a significant rise of Kawagita constant b more than 3 – fold, which means much higher packing velocity, indirectly showing an improved flowability compared to bulk drug.

[PE1-15] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Development of analytical method capable of identifying the chemically or biologically oriented variants of human growth hormone by capillary electrophoresis
Shin Hyoung Goo, Hong Sung Tae, Son Jae Woon, Youn Yu Seok, Han Hye Seon, Lee Kang Choon
College of pharmacy, Sungkyunkwan University

The therapeutic use of protein pharmaceuticals produced by recombinant DNA technology is increasing in recent decades. In order to investigate the quality of recombinant proteins, it is important to identify and assign the impurities produced in the process of recombination or in storage conditions. Capillary Electrophoresis is