The compound of 2"-O-benzoylcinnamaldehyde(CB-ph) is a derivative of 2"-hydroxy-cinnamaldehyde which is a methanol extract of cinnamonum cassia blume. It's a new anti-cancer agent which has been showed to inhibit the growth of various tumor cells in vitro and in vivo. In order to investigate the effective drug concentration and bio-distribution of CB-ph, the plasm-eg protein binding was studied. In this study, the degree of the binding of CB-ph to various serum proteins, the binding parameters, the binding site of CB-ph in human serum albumin, and the effect of some extensive protein-binding drugs on the protein binding of CB-ph in human serum albumin were investigated respectively by ultrafiltration and fluorescence spectrometry. From the results, it was found that CB-ph was a highly protein binding drug to human serum albumin, albumin was the major binding protein of CB-ph, and CB-ph bound especially to site I on human serum albumin according to an one-class model. The binding constant (K) was 55,377M\(^{-1}\) and the number of binding site of CB-ph to HSA was 0.6629 by Scachard plots, respectively. The protein bound fraction of CB-ph in HSA increased with an increase of HSA concentration. However, the binding of CB-ph was independent of incubation temperature. If CB-ph and site-I binding drugs, such as warfarin, were administered together, it was necessary to control the drug dosage regimen because of remarkable increasing fraction of the protein unbound fraction of drug resulted from the protein binding displacement.

[PE2-13] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Pharmacokinetics of eupatilin, an active comonents of Stillen?, a new antiagastic agent, in rats
Jang Ji Myun, Park Kyung Jin, Kim Dong Goo, Shim Hyun Joo\(^{a}\), Ahn Byung Ok, Kim Soon Hoe, Kim Won Bae
Dong-A Pharmaceutical Co. LTD., 47-5, Sanggal-ri, Kiheung-up, Yongin-si, Kyunggi-do, 449-905, Korea

The pharmacokinetics of eupatilin (an active components of Stillen\(^{®}\), a new antiagastic agent) were investigated using UV-HPLC method. The quantitation limit of eupatilin was 10 ng/ml in plasma. After intravenous administration of eupatilin, 30 mg/kg to rats, the plasma concentrations of unchanged eupatilin declined rapidly with the mean terminal half-life of 0.101 hr. Total body clearance was 121 ml/min/kg, and fractions of dose excreted in urine and feces for 24 hr were only 2.5% and 0.919%, respectively. But hydrolysis of glucuronide conjugated form of eupatilin with \(\beta\)-glucuronidase, the mean terminal half life of eupatilin including glucuronide conjugated form was prolonged with 22hr and the fractions of dose excreted in urine for 24 hr was increased with the value of 15.9%. After oral administration of eupatilin, 30 mg/kg to the rats, the absolute bioavailability was only 3.87% even though including glucuronide conjugated form of eupatilin. GI residual % of dose as an intact drug at 24 hr after oral administration of eupatilin, 30 mg/kg to rats was 68.5%, and that of including conjugated form was 90.8%. The large parts of eupatilin after oral administration were remained in gastrointestinal tract, an active site of drug.

[PE2-14] [2003-10-11 09:00 - 12:30 / Grand Ballroom Pre-function]

Toxicokinetics of CJ-11555: Gender Difference and Minimum Accumulation
Kim Il Hwan\(^{a}\), Noh Hyun Jung, Choi Jae Mook, Kim Deog Yeor, Park Jie Eun, Lee Sung Hak, Kim Taekrho, Kim Jin Wan, Kim Young Hoon
R&D center of Pharmaceuticals, CJ Corporation

Purpose: This study evaluated gender differences and extents of accumulation on chronic dose of CJ-11555 using rats. Method: 0, 10, 50 and 200 mg/kg/day of CJ-11555 (0.5% CMC) were orally administrated to rats for 28 days and observed toxicokinetic parameters. Plasma concentrations were analyzed by LC-MS/MS Result: Exposure to CJ-11555 increased with the increase in dose level for both sexes. Mean concentrations at 10 and 50 mg/kg/day were generally similar on Days 1 and 28, but were generally higher on Day 28 than on Day 1 at 200 mg/kg/day. \(C_{max}\) and AUC\(_{0-24}\) values were generally slightly higher in females on both collection days. There were no marked (>2 fold) differences in \(C_{max}\) and AUC\(_{0-24}\) values on Day 28 compared to Day 1 (except for females administered 10 mg/kg/day). Following the administrations of 10, 50, and 100mg/kg/day, on Day 1, \(C_{max}\) and