쾌속조형공정 선정을 위한 지원 시스템

변명석(광주과학기술원 대학원 기전공학과), 이관형(광주과학기술원 기전공학과)

A Decision Support System for the Selection of a Rapid Prototyping Process

Hong-Seok Byun and Kwan H. Lee(Dept. of Mechatronics, K-JIST)

ABSTRACT

This paper presents a methodology to be able to select an appropriate RP system that suits the end use of a part. Evaluation factors used in process selection include major attributes such as accuracy, roughness, strength, elongation, part cost and build time that greatly affect the performance of RP systems. Crisp values such as accuracy and surface roughness are obtained with a new test part developed. The test part is designed with conjoint analysis to reflect users’ preference. The part cost and build time that have approximate ranges due to cost and many variable parameters are presented by linguistic values that can be described with triangular fuzzy numbers. Based on the evaluation values obtained, an appropriate RP process for a specific part application is selected by using the modified TOPSIS(Technique of Order Preference by Similarity to Ideal Solution) method. It uses crisp data as well as linguistic variables, and each weight on the alternatives is assigned by using pairwise comparison matrix. The ranking order helps the decision making of the selection of RP systems.

Key Words : Test part(테스트 레코드), Rapid prototyping process selection(쾌속조형 공정 선정), Multiple attribute decision making(다양요 의무결정), Modified TOPSIS method(수정된 토피시스 방법)

1. 서론

쾌속조형 공정은 슬라이드 모델러나 CAD 서리스(surface)에서 모델링된 모델을 모사하는 STL 파일로부터 시작한다. RP 모델은 캐스팅 또는 용접을 위한 패턴(pattern) 제작, form/fit, 기능성 테스트, 디자인검증, 가시화 및 상호교환 교환을 위해 사용될 수 있다[1]. 최근에 이와 RP 공정의 고속 성장과 확산으로 인해, 사용자가 원하는 요구를 만족시키는 적절한 쾌속조형 공정 선정하는 것이 중요한 부분이 되었다. 그러나, 실제적으로 쾌속조형은 소유한 사용자가 공정 경험을 가진 사용자일지라도 적합한 쾌속조형공정을 선정하는 것이 매우 어렵다. 왜냐하면, 공정 선정 문제는 많은 요소에 의존할 뿐만 아니라, 각 시스템은 그룹들의 정점, 정점, 유 효성 및 제한성을 가지고 있기 때문이다. 이것은 현실적으로 공정 선정 문제는 이러한 복합적인 요소로서 이루어져 있기 때문에 결과 방법으로는 적절한 쾌속조형 시스템을 선정하는 데 매우 어려움이 있다.

따라서, 사용자가 원하는 요구를 만족시킬 수 있는 적절 공정을 선정할 수 있는 둘리 디자이너나 시각을 개발하려는 경우 제약자란에게 매우 중요하다[2]. 그럼에도, 컴퓨터 기반으로 하는 쾌속조형 시스템 선정 프로그램을 개발하는 연구가 아직까지 미흡한 실정이다.

본 연구에서는 오소(criterion)가 선호도를 포함하는 불확실성(imprecise) 값의 크리스프(crisp) 값 모두를 포함하더라도 적절한 쾌속조형 시스템 선정할 수 있는 방법론을 다룬다. 이를 위해, 쾌속조형 시스템 선정을 위한 효율적인 방법으로 다양요 의사결정기법(MADM)중 하나가 되고, 대안들에 대해서 순위를 매길 수 있는 TOPSIS 방법을 제시한다. 또한, 쾌속조형 시스템의 성능 평가를 할 수 있는 테스트 파트를 쾌속조형 분석(conjoint analysis)을 사용하여 고안하였다.

2. 다소요 의사결정

2.1 페지 다소요 의사결정
2.1.1 피지 집합 이론의 응용

"피지" 단어는 Zadeh가 위해 처음으로 소개되었 다. 피지이론은 수학적인 언어의 유용성에 한계를 해결할 수 있는 좋은 해를 제공한다 [3].

R를 만족하는 피지수정의 벨록(convex)하고 경계(normal)인 전체 집합 X의 피지 부분집합이라고 하면, 피지 집합은 벨록 함수에 의해 표현된다. Fig.1은 삼각피지수 정(triangular fuzzy number, TFN)을 나타낸다 [5].

![Fig.1 Triangular fuzzy number(TFN)](image)

본 연구에서는 주어진 요소에 대해 대안들이 예상하고 주관적인 정보로 포괄하고 있으며, 언어적 간적의 가중치의 변수가 주관적인 요소의 등급 (ratings)을 이용해 사용된다. 이들 언어적 값은 원에 연관된 상대적 벨록함수를 가진 피지수정의로서 표현될 수 있다. 언어적 변수는 Table 1에서 보여주는 것이다.

<table>
<thead>
<tr>
<th>Terms of linguistic variable</th>
<th>Fuzzy number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-very low(VVL)</td>
<td>A_1 = (0, 0, 1/8)</td>
</tr>
<tr>
<td>Very low(VL)</td>
<td>A_2 = (0, 1/8, 2/8)</td>
</tr>
<tr>
<td>Low(L)</td>
<td>A_3 = (2/8, 2/8, 3/8)</td>
</tr>
<tr>
<td>Slightly low(SL)</td>
<td>A_4 = (3/8, 4/8, 5/8)</td>
</tr>
<tr>
<td>Medium(M)</td>
<td>A_5 = (4/8, 5/8, 6/8)</td>
</tr>
<tr>
<td>Slightly high(SH)</td>
<td>A_6 = (5/8, 6/8, 7/8)</td>
</tr>
<tr>
<td>High(H)</td>
<td>A_7 = (6/8, 7/8, 1)</td>
</tr>
<tr>
<td>Very high(VH)</td>
<td>A_8 = (7/8, 1, 1)</td>
</tr>
</tbody>
</table>

2.2 수정된 TOPSIS 방법

TOPSIS 방법은 최적적으로 선택된 대안이 이상 해로부터 가장 떨어진 거리에 있고 부상해로부터는 가장 가까운 거리에 있어야 한다는 개념을 고려한다. TOPSIS 방법의 절차는 여러 문헌에서 찾아볼 수 있다 [4, 5]. 그런데, 기존 방법은 획득한 수치값에만 의존하여 계산되고 피지수(fuzzy number)를 포함하는 경우에는 접근방법이 수정되어야 한다. 즉, 기수(cardinal number)를 포함하면서 피지환경으로 확장되면서, 피지集합론은 아래와의 식으로 표현될 수 있다.

\[D = \left[\begin{array}{cccc} x_{11} & \cdots & x_{1(k-1)} & \tilde{x}_{a1} & \tilde{x}_{b1} & \tilde{x}_{c1} \\ x_{21} & \cdots & x_{2(k-2)} & \tilde{x}_{a2} & \tilde{x}_{b2} & \tilde{x}_{c2} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{n(k-1)} & \tilde{x}_{an} & \tilde{x}_{bn} & \tilde{x}_{cn} \end{array} \right] \]

계산의 간편성을 위해, \(x_{ij}, \ldots, x_{i(k-1)} (i = 1, \ldots, m) \)는 기수이고 \(\tilde{x}_{ai}, \ldots, \tilde{x}_{ci} (i = 1, \ldots, m) \)는 피지수라고 가정 한다. 언어적 변수, \(\tilde{x}_{ai} \)은 삼각피지수 \((a_i, b_i, c_i)\)이다. 그러나, 기존 방법은 아래와 같이 일관된 단계로 수정될 수 있다.

단계 1: 정규화된 의사결정행렬을 구한다. 벨록 정규화가 \(r_{ij} \) 와 \(\tilde{r}_{ij} \)를 계산하기 위해서 사용한다.

\[r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{j=1}^{k} x_{ij}^2}}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, k-1 \]

\[\tilde{r}_{ij} = \left(\frac{a_i}{e_j}, \frac{b_i}{e_j}, \frac{c_i}{e_j} \right), \quad i = 1, \ldots, m; \quad j = k, \ldots, n \]

여기서, \(e_j = \sum_{i=1}^{m} c_i^2 \)이다.

단계 2: 가중치가 부여된 정규화된 의사결정행렬을 구한다. \(V = [v_{ij}, \tilde{v}_{ij}]_{m \times k} \).

\[v_{ij} = w_{ij} r_{ij}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, k-1 \]

\[\tilde{v}_{ij} = w_{ij} \tilde{r}_{ij}, \quad i = 1, \ldots, m; \quad j = k, \ldots, n \]

\(w_{ij} \)는 \(j \)번째 요소의 가중치이고, \(\sum_{j=1}^{n} w_{ij} = 1 \)이다.

단계 3: 피지수를 디파지화한다. 각 피지수는 중심법(centroid method)에 의해 디파지화(defuzzify)된다. 삼각피지수 \(\tilde{v} = (v_a, v_b, v_c) \)에 대해, 디파지화된 중심값은 다음과에서 얻을 수 있다.
\[\bar{v} = \frac{\int v(\mu v)dv}{\int \mu(v)dv} = \frac{1}{3}(v_a + v_b + v_c) \] (8)

단계 4: 이상해석의 부합성해를 결정한다. \(A^* \) 와 \(A^c \)은 아래의 식으로 정의한다.

\[
A^* = (v_1, v_2, \ldots, v_{k-1}, \bar{v}_k, \bar{v}_{k+1}, \ldots, \bar{v}_n) \\
A^c = (v_1, v_3, \ldots, v_{k-1}, \bar{v}_k, \bar{v}_{k+1}, \ldots, \bar{v}_n)
\] (9) (10)

여기서, \(v_j^* (j=1, 2, \ldots, k-1) \)는 \(\min_{i \in J} v_{ij} \) 이거나 \(\{v_{ij} | j \in J \} \)이거나 \(\max_{i \in J} v_{ij} \) 이거나 \(\{v_{ij} | j \in J \} \)이다. \(v_{ij}^* (j=k, k+1, \ldots, n) \)은 중심값(centroid method)에 의해 디리페리화(defuzzification)된 모든 대안의 중심값(centroid value) 사이에서 가장 긴 값을 나타내는 피지수를 의미한다. \(v_{ij}^* (j=k, k+1, \ldots, n) \)은 이들 값 중에서 가장 작은 값을 나타내는 피지수를 의미한다. 여기서, \(J = \{j = 2, \ldots, n-j \} \)은 이익과 관련된 요소, \(J^* = \{j = 1, 2, \ldots, n-j \} \)는 비용과 관련된 요소이다.

단계 5: \(\bar{v} \)간적도(separation measure)를 계산한다. n차원 유럽리디언 거리는 대안들 사이의 격차를 계산한다.

\[
S_i = \sqrt{\sum_{j=1}^{n} (v_j - v_j')^2}, \quad i = 1, 2, \ldots, m
\] (11)

\[
S = \sqrt{\sum_{i=1}^{m} (S_i - S_i')^2}, \quad i = 1, 2, \ldots, m
\] (12)

단계 6: 이상해석의 상대적 접근도(relative closeness)를 계산한다. 대안 \(A_i \)의 이상적 해 \(A^* \)에 대한 접근도 \(C_i^* \)는 다음과 같다.

\[
C_i^* = \frac{S_i}{S_i + S}, \quad i = 1, 2, \ldots, m
\] (13)

대안 \(A_i \)가 \(A^* \)에 가까워지면 \(C_i^* \)는 1에 접근하고 대안 \(A_i \)가 \(A^* \)에 가까워지면 \(C_i^* \)는 0에 접근하게 된다.

단계 7: 선호순위를 결정한다. \(C_i^* \)의 크기에 따라 선호순서를 정하는데, \(C_i^* \)가 큰 대안이 더욱 선호지하는 대안이 된다.

2.3 가중치 결정
주요 요소에 대한 각 가중치의 요소의 중요도에 따라 주어진다. 중요도의 중요도의 평가는 다각적 의사결정(MCDM)에 논리 사용되

는 계층화기법(analytic hierarchy process)의 일반적 비교 행렬(pair-wise comparison matrix)의 관단행렬(judgment matrix)에 의해 유도된다. 행렬 \(A \)의 요소 \(a_{ij} \)라고 하면 각 행은 다음식에 의해 결정된다.

\[
w_i = (\Pi_{j=1}^{n} a_{ij})^{1/n}, \quad i = 1, 2, \ldots, n.
\] (15)

3. 테스트 파트 설계

3.1 컨조언터 분석

컨조언터 분석은 어떤 제품이 갖고 있는 속성이 하나하나에 고객이 부여하는 효용(utility)을 추정하기 위하여, 그 고객이 어떠한 제품을 선택할지 예측하기 위한 기법이다[7]. 측정에 포함될 수준과 속성은 Table 2에 보여주고 있다. 측정이 속성에 3 개의 수준이 있으므로 factorial design 에 의해 27 장의 테스트가 생성된다. 그러나, 이들 모든 테스트를 수행하기가 그들의 선호도에 따라서 뒤로 보낼 뒤로 배치하는 것이 매우 어렵고 허접스럽다. 이런 문제점을 피하기 위해서 fractional factorial design 을 사용하여 테스트 수를 13 장으로 줄였다. Breton-Clark's Designer 을 사용하여 main profile 테스트를 9 장으로 하고 hold-out profile 테스트가 4 장으로 디자인하였다.

| Table 2. Levels and attributes of the test part for conjoint analysis |
|-----------------------------|-----------------------------|-----------------------------|
| Level | Part size (mm) | Feature type | Feature size (mm) |
| 1 | 100x100x20 | Freeform | Less than 20 |
| 2 | 200x200x40 | Primitive | 20-40 |
| 3 | 300x300x60 | Both | Larger than 40 |

선택지를 사용하여 획득한 데이터의 해석결과를 토대로 설계된 테스트 파트가 Fig 2에 보여진다.

Fig.2 Test part

4. 선정

6 개의 주요 최적조합시스템을 비교하는 예가 수행된 TOPSIS 기법을 활용하여 수행되었다. 여섯
개의 주요 요소 즉, 정밀도(A), 표면질서(S), 인장
강도(T), 연성률(E), 파트 가격(C), 제작시간(B)이 제
속조형시스템 선정을 위한 평가기준으로서 이용된
다. 파트 가격과 제작 시간은 정량화 수치값을 제
산하기 힘들고 상기선에 많은 노력이 요구된다. 따라서,
이들 두 요소에 대한 값은 언어적 변수로 바꾸어 제산된다. Table 3은 주요 요소에 대한 모든 제
속조형시스템의 언어적 변수 및 수치값을 포함하는
등급을 보여주고 있다.

Table 3. The ratings of major RP systems

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>S</th>
<th>T</th>
<th>E</th>
<th>C</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA3500</td>
<td>120</td>
<td>6.5</td>
<td>65</td>
<td>5</td>
<td>VH</td>
<td>M</td>
</tr>
<tr>
<td>SLS2500</td>
<td>150</td>
<td>12.5</td>
<td>40</td>
<td>8.5</td>
<td>VH</td>
<td>M</td>
</tr>
<tr>
<td>FDM8000</td>
<td>125</td>
<td>21</td>
<td>30</td>
<td>10</td>
<td>H</td>
<td>VH</td>
</tr>
<tr>
<td>LOM1015</td>
<td>150</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>SH</td>
<td>SL</td>
</tr>
<tr>
<td>Quadra</td>
<td>95</td>
<td>3.5</td>
<td>30</td>
<td>6</td>
<td>VH</td>
<td>SL</td>
</tr>
<tr>
<td>Z402</td>
<td>600</td>
<td>15.5</td>
<td>5</td>
<td>1</td>
<td>VVL</td>
<td>VL</td>
</tr>
</tbody>
</table>

수정된 TOPSIS 방법을 적용하기 위해서, Table 3의
의사결정 행렬을 식(4)와 식(5)에 의해 정규화된
다음, 각 피지수를 포함하는 랜덤화된 의사결정
행렬은 각 요소에 편의하는 가중치를 높여 가중
치가 부여된 의사결정행렬로 변환된다. 그러면, 이
상태와 부여상태로부터의 균간 측정이 계산되고,
최종적으로, 각 시스템들의 상대적 근접도를 얻는다.
Table 4은 상대적 근접도와 그 값에 따른 순위를
보여주고 있다.

Table 4. The rank of RP systems according to closeness
coefficient

<table>
<thead>
<tr>
<th></th>
<th>C^h w_A</th>
<th>w_A rank</th>
<th>C^*</th>
<th>w_B rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA3500</td>
<td>0.4516</td>
<td>4</td>
<td>0.8353</td>
<td>2</td>
</tr>
<tr>
<td>SLS2500</td>
<td>0.4250</td>
<td>5</td>
<td>0.7060</td>
<td>3</td>
</tr>
<tr>
<td>FDM8000</td>
<td>0.3009</td>
<td>6</td>
<td>0.5799</td>
<td>4</td>
</tr>
<tr>
<td>LOM1015</td>
<td>0.5682</td>
<td>2</td>
<td>0.5522</td>
<td>5</td>
</tr>
<tr>
<td>Quadra</td>
<td>0.5039</td>
<td>3</td>
<td>0.8427</td>
<td>1</td>
</tr>
<tr>
<td>Z402</td>
<td>0.6640</td>
<td>1</td>
<td>0.1721</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4로부터 부여한 가중치에 따른 제속조
형시스템의 순위를 확인할 수 있다. 파트 가격과 제
작시간에 더 많은 중요도를 둔 가중치 w_A=(0.1113, 101113, 0.0634, 0.0634, 0.3253, 0.3253)를 부여하였을 때 Z402가 가장 높은 값을 나타내었으므로 다음으로
LOM1015, Quadra 순으로 나타났다. 따라서, 부여된 가중치에 대하여 가장 좋은 대안은 Z402가 될 것
이다. 이전까지로, 정밀도와 표면질서에 상대적
중요도를 높이 은 가중치 w_B=(0.319, 0.319, 0.129, 0.129, 0.052, 0.052)를 적용했을 때 Quadra가 가장 높은 값을 보였고, 두번째로는 SLA3500, SLS2500 순으
로 나타났다. 이로부터 각주에 따라서 시스템의
순위가 바뀌는 것을 알 수 있다.

5. 결론

본 연구는 다중의 요소가 크리스프 데이터 및
불확실성 모두를 포함할 때 파트의 응용목적에 적
합한 가장 좋은 제속조형시스템을 선정하는 방법론
을 제시하였다. 또한, 반응원 분석을 사용하여 다
수로 파트가 설계되었다. 정량화 테이터의 획득이 어
려운 파트 가격과 제작시간의 경우는 랜덤화 함수
로 표현된 피지수로서 처리하는 언어적 변수를 사
용하였다. 이들 양적인 데이터와 질적 데이터를 포
함하는 요소의 해석을 위해서 수정된 TOPSIS 방
법은 제안하였다. 이 방법은 기수와 피지수를 쉽게
나눌 수 있고 계산이 단순하여 다수의 사례의 순위
를 쉽게 매길 수 있다. 이들 순위는 제속조형 시스
템에 정체가 있는 사람이 아니라 검증이 있다고 할지라도
요소가 많아 복잡한 시스템을 결정하기 힘든
 경우에 효과적인 의사결정정보를 제공할 수 있을 것
이다.

후기

본 연구는 국가중점개발사업의 일환으로 수행된
것이며, 이에 관계자 여러분께 감사드립니다.

참고문헌

1. R.E. Williams, S.N. Komnagiri, V.L. Melton and
R.R. Bishu, Investigation of the effect of various build
methods on the performance of rapid prototyping
(Stereolithography), Journal of Material Processing
2. M.K. Tiwari and Ranjan Banerjee, A decision
support system for the selection of a casting process
using analytic hierarchy process, Production planning
3. Zadeh, L.A., Fuzzy sets, Information and Control 8,
pp.338-353, 1965
4. S.J. Chen and C.L. Hwang, Fuzzy Multiple Attribute
Decision Making-Methods and Application, Springer
5. 강인성, 의사결정론 - 분석 및 응용, 영식문화사,
1997.
6. Saaty, T.L., Multicriteria Decision Making: The
Analytic Hierarchy Process, RWS PWS Publications,
Pittsburgh, 1990.
7. 유일유, 현대의 마케팅학, 범문사, 1997.