광학 부품의 웹 기반 쾌속제작 시스템

백창일, 추원식, 정우벽, 전우, 김치원, 성미정, 강지영, 안성훈*
(경상대학교 기계항공공학부)

A Web-based Rapid Fabrication System for Optical Components

(School of Mechanical & Aerospace Engineering, Gyeong Sang National University)

ABSTRACT

In this paper the advantage of web technology applied to Rapid Prototyping is discussed. Two fabrication processes are chosen to be web-enabled. One, a post-process of FDM is developed to provide translucent plastic parts made of medical grade ABS material. The other, a system to fabricate laser machined Light Guide Panel is developed. In order to show the timesaving characteristics of the web-based tools, two websites are implemented (http://nano.gsnu.ac.kr/fdm & http://nano.gsnu.ac.kr/laser). The 3-tier architecture is applied for the Internet communication between designers and manufacturing sites. The integrated design tools and physical manufacturing processes enable designers to submit a new design and to receive the fabricated parts in an expedited manner. Example parts are fabricated using the web-based system to prove the concept of the web-based design and Rapid Prototyping.

Key Words: Rapid Prototyping (แพง제작), World Wide Web (WWW), Internet (인터넷), Back Light Unit (BLU), Light Guide Panel (광장관), Fused Deposition Modeling (FDM), Translucent (투명성)

1. 서론

แพง조형(Rapid Prototyping) 또는 신속제작은 CAD로 설계된 형상의 시작품을 신속하게 제작하여 제품개발에 소요되는 시간과 비용을 절감한다. 본 논문에서는 빨 빨 QM을 도량관이라는 무가치 쾌속적인 부품을 신속하게 생산할 수 있는 물리적인 공정에 대하여 기술한다. 그리고 이러한 공정들을 합합하여 사용할 수 있는 웹기반 소프트웨어의 개발을 다루고자 한다.

2. 반투명 FDM 공정

แพง조형물의 기계적 강도나 색상 등이 다양성 산공정으로 제작된 제품과 유사한 기능성 쾌속조형물을 제작하는 시도가 계속되었으며 여러 공정들이 개발되고 있다. 대표적인 다양한산업기술인 플라스틱 쾌속생성의 경우 반투명 또는 무명한 부품의 사용이 증가되면서 사출공정을 제작하기 전에 시작품의 광학적 특성을 예를 들어 무명도를 원활하고 유심히 계 제작하는 것이 관심의 대상이 되고 있다.

Stratasys 사의 FDM(Fused Deposition Modeling)은 ABS, 오크로운 ABS(ABSi), 플라카보네이트를 합성체료로 사용한다. 이 중 FDM으로 제작된 ABS의 압연한 무명도를 제공하여(800nm 광선에서 무명도 1% 미만) 후처리를 통해 무명도를 높일 가능성이 있다. 본 논문에서는 ABS로 시험을 제작하고 수지의 침투(infiltration)로 후처리(post-process)하여 FDM으로 제작된 시작품의 무명도를 향상시키는 실질에 대하여 설명하고자 한다.

2.1 후처리 공정

광학적으로 무명도를 향상시키기 위해 ABS이 서면에 비글로스를 갖는 아크로 수지를 실시하였다. 시험은 발생에서 1 분간 수지에 담근 후 30 초간 조경을 하고 이를 10 번 반복하였다(표 1).

Fig. 2는 아크로 수지가 합무한 후의 서면의 마이크로 구조를 보여준다. 수지침윤 후 공기에 벗겨 수지로 제작한 ABS와 아크로 무명수지의 경계가 잘 구별되지 않는다. 이렇게 충전된 수지로 인해 벗의
산란이 감소하여 결과적으로 두께도가 향상된다. 여러 가지 다른 공정조건의 시험시험이 결과 약 26%의 두께율을 얻을 수 있었다 [1].

Fig. 1. The post-process of FDM ABS to obtain improved transmissivity.

Fig. 2. Microscopic view of the resin infiltration process.

3. 레이저 가공 도광판

디스플레이 장치 중 TFT-LCD는 자가 발산하는 광원이 있기 때문에 반드시 색상을 필요로 하고 Back Light Unit (BLU, Fig. 3 참조)는 TFF-LCD의 위쪽에서 배면 광원으로 사용되어 있다. BLU의 주요 부품이라 할 수 있는 도광판(Light Guide Panel)은 각 반사 패턴으로 코팅된 상 광원을 뒷 광원의 형태로 확산시키는 역할을 하며 재질로는 PMMA 수지가 주로 사용되고 있다. 현재 도광판의 광학적 패턴 형상을 위하여 적용되고 있는 제조 공법으로는 스크린 인쇄 방식, 마스 방식, 스탬핑 방식, V 키링 방식 등이 있다. 기존의 이러한 제조 방법들은 각 제품의 성능, 제조성, 제작 비율, 생산성과 관련하여 나름대로의 장단점을 지니고 있으며 일반적으로 선두적인 혁신이 필요하다.

본 연구에서는 블 스탬핑 방식의 레이저 마킹 기술을 도광판 패턴 제작에 도입함으로써 고속, 고정도, 비접촉식 가공 방법을 시도하였다.

3.1 시스템 구성

Fig. 4는 사용된 실험 장치의 개념적인 그림이다. 본 연구에서는 두명 제작한 PMMA의 광 두께율을 고려하여 피장이 10.6μm에 CO₂ 레이저를 성정하였다. 위치제어방식은 안정성과 고정도화를 위하여 스테이지 방식을 사용하였다. CNC 컨트롤러와 레이저 컨트롤러의 동시제어를 위하여 하드웨어 및 인터페이스를 구축하였다.

Fig. 4. Schematic diagram of the system configuration for laser machining.

Fig. 5는 레이저에 의해 약 200μm의 광으로 가공된 PMMA의 단면을 보여준다. 단면의 형상은 V 키링 등의 기계식 가공에 비해 순화되어 있는 품질을 보여주며 레이저의 폭과 과할을 제어하여 단면형상이 어느 정도 조절할 수 있다.
4. 웹 기반 디자인 시스템

위의 두 공정을 웹환경에서 사용하기 위하여 홈페이지를 개설하였으며 각 공정을 사용하는 시나리오는 다음과 같다.

4.1 반투명 FDM
반투명 FDM 시각품을 제작하기 위해서 사용자는 먼저 CAD로 제작하고자 하는 형상의 stl 파일을 생성한다. 이 stl 파일은 FDM 제작용 웹사이트인 Fused Deposition Modeling Advisory Service (FDMAS, http://nano gsnu.ac.kr/dfm)에서 엽로드하여 서버로 전송한다. 반투명 FDM을 제작하기 위하여 ABS를 재료로 사용하고 후처리(post-process)에서 Acrylic Resin을 선택한다(Fig. 6). 이러한 공정변수들인 제조조건 및 물리적인 후처리 공정은 직접 후 제작된 부품은 주문에서 변달된다.

4.2 도광판 가공
사용자는 웹페이지(http://nano gsnu.ac.kr/laser)에서 제공되는 도광판 제작기능인 도구를 사용하여 종의 간격을 설계한다. 이 도구는 웹상에서 벤저(Bezier) 커브를 사용하며, CAD를 사용하지 않고 수 분 이내에 x 방향과 y 방향의 제작을 생성할 수 있다(Fig. 7). 인터넷을 통해 도광판의 제작을 요청하면 설계된 패턴은 레이저기구를 위한 NC 코드로 변환된다. 생성된 NC 코드는 웹브라우저에서 즉시 확인할 수 있고 다음드 받을 수도 있다(Fig. 8).

4.3 통신체계
이러한 인터넷기반의 통신을 위하여 3 단계(3-tier) 통신체계를 사용하였다(Fig. 9). 제 1 단계는 웹브라우저이며 공정변수의 선택과 웹기반 설계도구로 사용된다. 제 2 단계는 웹서버와 FDMAS 서버. 그리고 LGP 서버로써 웹페이지의 송신과 입력된 자료를 제 3 단계로 전달하는 중계역할을 맡는다. 제 3 단계는 공정관련 자료들을 제공하며 공정계획과 NC 코드를 생성하는 역할을 한다. 구체적인 부분에는 차이가 없으나 FDMAS와 LGP 통신체계는 이러한 공통적인 요소들을 포함하여 웹기반 시스템을 형성한다. 웹기반의 통신은 설계자와 제작자를 연결하여 제 4의 단계라고 할 수 있는 제작(fabrication)단계가 원거리의 제작자에게 의해 이루어 질 수 있게 한다 [2]. 또는 설계자가 제작비용 보유할 경우 웹기반의 공정계획안을 사용하여 원격에서 실시간 제작을 시도할 수 있다.
5. 시작점의 예
반투명 FDM 제품과 레이저로 가공된 도장판의 예가 Fig. 10과 Fig. 11에 각각 보여진다. Fig. 10은 ABS이 레이저로 가공된 도장판이 레이저로 가공된 도장판의 모습을 보여주고 있다. Fig. 11은 레이저로 가공된 도장판의 모양을 보여주고 있다. 

6. 결론
반투명 FDM 과 도장판의 제작제작시스템이 시도되었다. 후처리를 거친 FDM ABS의 두명도를 시각시기는 공정이 개발되었으며, 레이저로 가공된 도장판은 인쇄방식에 비해 높은 품질을 보여주었다. 이러한 공정을 신속하게 제작하기 위한 레이저와 인터넷기반 통신체계가 구축되었다. 필요 성실과 생산성을 연계하는 기능을 제공하여 제작제작 공정의 제작시간을 한층 더 줄일 수 있다.

추기
본 연구는 BK21 사업단과 대학기술산업지원단 (UNITEF)의 지원에 의해 수행되었으며 이에 감사 드립니다.

참고문헌
1. 정수택, 안성훈, "후처리를 통한 반투명 RP 제료의 개발," 대한기계학회 논문집 (계제학회).