크리트리도 내에서 방향확률을 이용한 직선선분의 위치평가

강승균(제주수경대 메트로닉스계열), 임중환(제주대 기계에너지생산공학부), 강철용(제주대 기계에너지생산공학부)

Extraction of Line Segment based on the Orientation Probability in a Grid Map

S. K. Kang(Majors of Mechatronics, CTC), J. H. Lim(Faculty of Mechanical, Energy and Production Engineering, CNU), C. U. Kang(Faculty of Mechanical, Energy and Production Engineering, CNU)

ABSTRACT

The paper presents an efficient method of extracting line segment in a local map of a robot’s surroundings. The local map is composed of 2-D grids that have both the occupancy and orientation probabilities using sonar sensors. To find the shape of an object in a local map from orientation information, the orientations are clustered into several groups according to their values. The line segment is then, extracted from the clusters based on Hough transform. The proposed technique is illustrated by experiments in an indoor environment.

Key Words: Mobile robot(이동로봇), Grid(크리트리), Orientation probability(방향확률), Local map(국부지도), Cluster(클러스터), Hough transform

1. 서론

이동로봇의 자율행동을 하기 위해서는 “어디에 있는가?”, “어디로 가고 있는가?” 그리고 “어떻게 목표점에 도달할 것인가?” 하는 물음이 해결될 수 있어야 한다. 이 중 첫 번째 물음에 대한 답이 위치추적(Localization)이다. 즉, 지금까지의 정보와 현재의 정보로부터 작업환경의 모양이나 로봇이 위치해 있는 결과, 위치추적의 정확성은 다른 두 물음에 대한 답의 기반이 된다. 이에 위치추적은 자율행동에서 가장 중요한 기능이라고 할 수 있다.

초음파센서를 이용한 위치추적 방법은 크리트리 형태의 지도를 이용하는 방법과 물체의 형상(선, 곡선 등)을 기준으로 하는 방법들이 있다. 전자는 기준지 도와 현재의 지도를 비교하여 그 불일치가 최소 가 되는 위치를 찾아내는 방법으로서 Elles 등에 의해 처음으로 제안되었다. 그러나 이 방법은 초음파 센서의 경직효과(Specular Reflection) 등으로 인하여 지도의 점이 범어지거나 기준지도와 비교할 지도에 많은 정보가 빠져 지도의 점이 좋아질 때까지 기다 리거나, 그 동안의 위치추적이 분간해 실점적 으로 연속적인 위치추적이 어렵다. 인체 등은 이 방법을 개선하여 비교적 적은 간격으로 위치를 추적 하는 방법을 제안하였으나 역시 연속적인 위치추적 이라기보다는 위치 재조정(Relocation)에 가까운 것 이다.

Leonard는 크리트리 형태가 아닌 물체의 형상, 즉 직선, 모서리, 곡선 등의 기하학적 형상으로 지도 를 구성하고 초음파센서의 거리정보로부터 동일거 리영역(Region of Constant Depth : RCD)를 분류하여 이 영역의 대표 거리를 추출한 다음 이것과 일종간 안정성을 이용하여 연속적으로 위치를 추적하는 방법을 제시하였다. 그는 이 방법을 이용하여 이동로봇이 주 시간동안 이동하고도 아주 정확하게 위치 를 추적할 수 있음을 실험적으로 입증하였다. 그러 나 이 방법은 기하학적인 기본형상으로 지도를 표현하는 것으로 인해 RCD 영상 등을 메질 시키기 위해 아주 복잡한 과정을 거쳐야 하는 단점이 있다.

홍등은 상기의 두 지도 작성 방법을 통합하여 직 선분도 지도 생성 방법을 제안하였다. 이 방법은 이동로봇의 주변 정량정보에 설정된 저속 히스토그 램 계산법을 이용하여 장애물에 대한 정보를 각 차량에 누락시켜 이를 정보로부터 적신 정보를 구성한 모델기반지도를 생성하였고, 이러한 방법으로 작용점에서 얻은 장애물의 적신 정보들은 노출 적으로 추출하여 이동로봇의 운행에 필요한 정보를 작성하였다. 그러나 모서리 부분에서는 선형의 특성으로 인하여 적절히 생성되지 않았다.

따라서 본 연구에서는 크리트리 형태의 베이지안 확률모델을 사용하고, 작용점간의 정보부분을 사용 하는 국부지도를 사용하여 각 섹션에 방향확률을 평가한다. 또한 동일한 방향확률을 기간 정보의 집합
율 하나의 캐스터로 하여 작업영역 중 모서리부분의 형상에 대하여 추출할 수 있는 방법을 제안하게 된다.

2. 국부지도(Local Map)

그래드 형태의 지도는 대상 공간을 2차원으로 근사하고 전체를 여러 개의 그래드로 나눈 다음 각 그래드들이 존재하는 위치의 그래드에 일정한 값을 주어 표현한 것이다. 그래드의 각각은 부분에 해당하는 그래드 만 정의하여 일정한 값을 두어 함으로서 필요한 메모리 수를 줄이고 로봇 주위의 문제를 빠르게 표현할 수 있다. 또한 경로노드가 빼어지는 초음파센서나 적외선 센서 등을 이용하여도 장애물정보를 안정적으로 제공해주며 정점이 있다.

Fig. 1 Configuration of local Map

정밀한 주정체어 및 위치추적이 이루어지기 위해서는 정밀도가 높은 지도 작성이 필요하며, 따라서 그래드의 크기를 가능한 작게 해야 한다. 그러나 로봇의 메모리에는 한계가 있으며, 그래드의 크기 작아질수록 필요한 메모리량이 늘어나므로, 좁은 양을 하나의 지도로 작성하기는 어렵다. 이러한 문제는 로봇 주위의 일정한 부분만을 대상으로 국부지도로 작성함으로써 해결된다.

국부지도는 로봇의 현재 위치를 중심으로 일정한 원도우 내만을 대상으로 하여 고해상도의 지도를 형성한다. 국부지도의 크기는 60x60개의 그래도 구성되어 있으며 각 그래드의 크기는 0.05x0.05 m²이다. 지도의 중심은 로봇의 중심과 일치한다.

이 국부지도는 로봇이 진행함에 따라 같이 이동하여 그래드의 확률 값도 같이 이동된다. 로봇은 항상 국부지도의 중앙에 위치하며 국부지도는 기존의 개체에 대해 그 방향이 일정하게 유지되고 로봇이 태동으로 방향을 바꾼다.

3. 방향추정(Orientation Probability)

초음파센서는 음파와 음파사이의 거리와 각도에 따른 경도 값을 갖는다. 이 경도 값을 기준으로 방향추정이 필요하며, 각도는 각도 추정에 이용하여 장애물과의 거리를 결정한다. 로봇이 이동할 때 로봇은 로봇 주위의 장애물을 탐지하여 로봇의 방향을 결정하여 로봇의 방향을 대기로 경도를 추가로 추정한다.

여기서 $W_{ij}$는 음파와 음파사이의 거리와 각도에 따른 경도 값을 갖는다. 이 경도 값을 기준으로 로봇의 방향을 결정한다. 로봇이 이동할 때 로봇은 로봇 주위의 장애물을 탐지하여 로봇의 방향을 결정하여 로봇의 방향을 대기로 경도를 추가로 추정한다.

여기서 $W_{n+1}$는 $W_{n}$의 경도 값을 갖는다. 이 경도 값을 기준으로 로봇의 방향을 결정한다.
\( W_{n,i} = W_{c} + W_{occ,i} \) \tag{4} \]

즉, (1)의 방향에 대한 새로운 가장자리 정보의 합이다. 식 (2)와 (3)을 사용하여, 전체영역내의 모든 점은 각각의 새로운 정보가 들어올 때마다 개선된다. 비점형영역 내의 점들의 방향정보는 국부지로 내에서 추적 점형영역의 점들만으로 계산되어되기 때문에 개선할 필요가 없다.

4. 방향확률에 의한 형성추출

지도 내의 그림은 자신의 방향확률을 갖는다. 이에 따라 그림의 그룹으로 클러스터를 이루게 된다. 이들 방향정보로부터 국부지로 내에 있는 물체의 형태를 얻을 수 있게 된다. 여기서, 클러스터 중심을 각 클러스터에서 방향정보의 평균값으로 정의한다. 클러스터 중심은 국부지로가 구성하고 있는 물체의 선분의 수로 표현되며, 중심의 값은 초기 기준 좌표계에 대한 선분의 각 방향으로 표현된다. 그러나 선분의 방향은 각각 좌표계에 대하여 루프가 정의되므로 최적의 위치가 없다. 단지 선분의 사용에 따라 길이가 관계되는 물체의 형태 정보를 얻을 수 있다. 국부지로 내에서 각 방향을 \( O_1 \) 벡터로, \( k \) 번째 클러스터의 중심을 \( C_n \), 그리고 동일 클러스터에 속한 각각의 방향의 벡터로 \( D_n \) 라 하자. 클러스터링 알고리즘은 다음의 단계를 따른다.

1 단계 : 이전의 클러스터링을 통해 클러스터의 초기값으로 놓아 중심을 잡는다. 여기서 중심사이의 거리를 \( D_n \)로 보는 것이 좋다.

2 단계 : 지도 내의 각각의 점들의 탐색에 대하여, 모든 \( k \)번째 클러스터 중심의 \( D_n \)에 대한 \( D_{mn} = \text{min} \{ \theta, O_1 \} \)를 구하고 다음의 과정을 수행한다.

(a) 만약 \( D_{mn} \leq D_n \)이라 하면, \( O_1 \)은 \( k \)번째 클러스터에 속하고 \( C_n \)를 고려해서 새로운 \( C_{mn} \)를 구한다.

(b) 만약 \( D_{mn} > D_n \)라면 \( O_1 \)은 새로운 클러스터 중심이다. \( O_1 \)가 새로운 클러스터 중심으로 놓으면 중심들의 수는 1만큼 증가한다.

위의 1 단계는 클러스터 중심들의(물체의 형상) 감지 기법이 되지만, 2 단계는 정보를 추적하기 때문에 의미한다. 그리고 중심의 수는 2차로 늘어난다. 이것은 실제 중심들의 뒤에 각각의 형상 정보가 새로운 중심으로 선택될 수 있기 때문이다. 결론적으로, 실질적인 중심들의 수의 큰 부분은 Fig. 3에서 보는 거리 \( D_n \)에 의해 결정된다. 그러므로 \( C_n \)과 \( C_{mn} = \text{min} \{ \theta, O_1 \} \)는 초기 중심으로 선택되어야 할 것이다.

![Fig. 3 Actual one cluster is divided into two ones.](image)

클러스터링 처리과정을 통해 두 중심이 실질적인 중심 \( C_n \)을 가지며 연속적으로 이동할 것이다. 그러나 방향이 정확히 \( C_n \)의 선들이 무한한 수가 아닌 한 두 중심은 결국 하나로 되지 않으므로 국부지로 내에 물체의 형상이 감지되는 범위(예를 들어, 토끼보다 또는 다른 물체를 반영할 때)가 이상한 것이다. 그러나 클러스터링 알고리즘에 사용된 선의 각도를 추가하여 두 개의 중심을 가지는 중심들로부터 실제 클러스터 중심을 선택할 수 있다.

3 단계 : 단일 두 중심이 \( D_n \) 안에 위치한다면 다음 식을 이용 새로운 중심을 구한다.

\[
C_{occ} = C_n + \frac{C_n N_n}{N_n + N_1} \tag{5}
\]

식 (5)에서 \( N_n \)과 \( N_1 \)은 \( C_n \)과 \( C_1 \)에 속해있는 선들의 수이다.

Fig. 4는 식 (5)로 나타내는 두 시계에 대한 또 다른 예를 보여준다. 이 경우에서 클러스터 중심의 수의 한계는 두 개가 된다. 그림 4의 알고리즘은 실제 중심을 찾을 수 있지만 실제 중심으로부터 이전까지는 많아야 \( D_n/2 \)이다.

![Fig. 4 Two cluster centers are located within \( D_n \).](image)

이 문제를 해결하기위한 한계적 가능성은 하나의 선의 \( D_n \)으로 표현되는 방향의 분포범위를 줄이기 때문에 클러스터 중심의 수가 줄어난다. 그러나 \( D_n \)이 \( \theta \)보다 많은 경우 선이의 유효폭으로부터 세기기 때문에 분포범위를 변화시킨다.
수 없다. 그러므로 기존 좌표계에 대한 방향값의 작은 신호들은 구분할 수 없다.
그러나 $\omega$ 보다 작은 각도차이로 신호가 구성된 국부지도는 충분한 위치정보를 줄 수 있기 때문에 클러스터링 방법이 여전히 위치평가 시스템에 적용할 수 있다.

5. 적석산분의 위치 추출

그림에 나타내어 국부지도에서는 생물의 생활성을 그림으로 Fig. 5에서처럼 여러 개의 신호로 구성된다. 오른쪽 그림에는 국부지도내의 같은 방향값을 갖는 신호들이 보여주며, 적석산분의 클러스터가 만들어질 수 있다. 이 클러스터는 방향값을 갖는 것임에 대하여, 적석산분은 적석산분을 구성할 때 유용한 방법의 Hough Transform를 적용하여 센서로부터 추출된 적석산의 위치 및 칼럼을 추출하고자 한다.

![Fig. 5 The local map and distribution of orientations.](image)

 적석산분의 동작을 나타내는 적석산분은 좌표계에 좌표계 변화 하여 적석산분에서 적석산분 유형으로 변환되며, 나머지 학습 및 그룹화에 영향을 미친다. 따라서 적석산분의 위치를 찾아서 적석산분과 적석산분 글을 이용하여 적석산분을 추출할 수 있다.

일반적으로 입력 좌표계 $(x, y)$로부터 좌표계 $(p, \theta)$로의 변환은 식(6)과 같다.

$$ p = x \cos \theta + y \sin \theta $$

이면 8의 $(x, y)$를 나타내는 적석산분에 수직인 적석산과 각 점이 이루는 각도의 합을 $p$는 원점으로부터 적석산분의 수직 거리를 나타내며, 이 적석산분은 0과 $\pi$ 사이의 표현이 가능하므로 이 적석산분의 점은 같은 $\theta$와 $p$값을 가진다.

이를 매개변수로 2차원 배열로 구성하는 데 $\theta$는 $1$ ~ $180$도 범위에서 $\Delta\theta$ 간격으로 $p$는 원점으로부터 적석산분의 수직 거리를 나타낸다. 즉, 영역은 각도 $\theta$를 고정하고 국부지도로 형성된 그림 내의 점별로 적석산분을 대응하여 $p$를 구하고 $p$의 범위 안에 있는 배열 $A[p]$를 구성시켜 각도 $\theta$ 범위 안에서 $\Delta\theta$ 간격으로 적석산분의 각을 얻음으로써, 적석산분의 좌표계를 맞게 할 수 있는 적석산분의 위치를 찾아서 적석산분의 방향 값을 구할 수 있다. 이와 같은 방법을 이용하여 국부지도 내에서 방향값의 적석산분을 갖는 신호를 이루야 적석산분을 추출하는 과정은 다음과 같다.

1단계 : 국부지도 내에서 장애물 등의 영향을 받지 않은 방향값을 갖는 신호를 각각의 클러스터에 저장한다.
2단계 : 저장된 각각의 클러스터에 대하여 신호의 위치 값을 가지고 히트맵을 통하여 누락해 역을 만든다.
3단계 : 누락해 역 내에서 최대 길이의 연속된 인덱스 값 $(C_r)$을 찾는다. 이 $C_r$ 로부터 임의 각도 간격만큼에 해당하는 $C_l$을 결정한다.
4단계 : 3단계에서의 각각의 인덱스 값 $(C_r$와 $C_l$)을 가지고 다음의 식을 사용하여 적석산의 양 끝점 $(x, y)$와 $(x, y)$를 계산한다.

6. 실험 및 고찰

그리드 형태 지도를 이용한 적석산분 위치측정의 유효성을 입증하기 위해 실제 시험을 이용하여 실험을 수행하였다. 실험에 이용된 로봇은 Nomad Scout 로봇으로서 22.5도 간격으로 16개의 Polaroid 주합파서가 장착되어 있어 각 형식은 0.15m에서 1m까지의 범위를 감지할 수 있다. 로봇은 각 센서간을 16개의 조용히 위치정보를 바꿔 주어 센서를 통해 캡쳐된 정보로부터 dead reckoning 위치정보를 제공하고, 이를 이용하여 위치추적을 수행하였다. 실험환경은 Fig. 7과 같이 밖, 중앙지구, 목록도 외곽을 이루고 있으며, 원형 로봇이고 S는 출발 지점이다. 사각형은 실험환경 내에서 로봇이 이동 중 모서리 부근에서 선택되었던 국부지도를 나타낸다.

![Fig. 7. Experimental environment.](image)

Fig. 8은 각 모서리 부근에서 선택되었던 국부지도들과 이들 주변의 각 정점 상부 등 각 적석산분 위치를 갖는 적석산분의 위치를 나타내는 클러스터로 하여 이들의 위치를 비교해 본 후 적석산분을 추출한 결과를 보여준다. Fig. 8(a), Fig. 8(c) 및 Fig. 8(e)는 모서리 부근에서 검출할 내외가 없었지만 MBM 모델에 의한
7. 결론

본 연구에서는 초음파와 센서의 정보에 의해 구성되어 있는 그리드 형태의 지도로부터 속도의 역량을 추출하는 방법을 제시하였다. 기존의 방법은 하나의 정점으로 나타나는 그리드에 대해서 그 정점에 대한 정보를 이용한 것인데 비해 본 방법은 그리드의 형태를 이용함으로서 다른 정점으로부터 효과적으로 각 정점을 추출할 수 있음을 실현을 통하여 입증하였다. 향후 연구 방향은 구간 지도에서 추출된 정점을 이용하여 전체 환경에 대한 물체 인식지도를 제시하는 방법을 개발하는 것이다.

참고문헌

4. 공주환, 초음파센서를 이용한 자율로봇의 지도형성 탐사 및 경로계획, 박사학위논문, 포항공과대학교, 1994