백색광 주사 간섭계에서 편광을 고려한 반사미 위상 변화

김영식(한국과학기술원 기계공학과), 김승우(한국과학기술원 기계공학과)

Phase change on reflection considered of the polarization in white-light interferometer

Young Sik, Ghint(Mechanical Eng Dept. KAIST), Seung Woo. Kim(Mechanical Eng. Dept., KAIST)

ABSTRACT

The phase change upon reflection from target surfaces in white-light interferometer induces measurement errors when target surfaces are composed of dissimilar materials. We prove that this phase change on reflection considered of the polarization of the white-light causes the shift of both envelope peak position and fringe peak position of several tens of nanometer. In addition, we propose a new equation of white-light interference fringe pertinent to the polarization of source.

Key Words : phase change upon reflection (반사미 위상 변화), polarization (편광).

1. 서론

백색광주사간섭계(White-light Scanning Interferometer)는 백색광의 광범위한 주파수 영역으로 인한 투명 가간섭거리(temporal coherence length)를 활용해 심도별범위의 산사원 형상측정에 널리 응용되고 있다.11 단색의 레이저 광원에 비해 가간섭거리가 수 미터량단위(μm)로 한정되어 있어서 투명 영역에서만 간섭 무늬가 생성되며 형상의 위치가 분명하게 해호성(ambiguity)의 문제점으로부터 자유롭게 된다. 또한 수 밀리미터의(mm) 크기의 평상도 난노미터(μm)의 수치 분해능으로 측정할 뿐만 아니라 측정 속도로는 접촉식 측정기에 비해 으르게 하여, 최근 초정밀 형상측정에서 각광을 받고 있다. 백색광주사간섭계의 기본원리는 다음과 같다. 평면방향으로 측정 물체의 표면을 주사 이동시키면서 물체의 각 점에 대한 간섭 무늬를 얻는다. 그리고 얻은 간섭 무늬의 점점이 가시도 정점이나 위상 정점24)을 찾아 측정 물체에 대한 산사원 정보를 얻어낸다. 보통 간섭 무늬의 점점의 위치는 광 경로차(OFD : Optical Path Difference)에 의해서만 결정된다. 이 점에서 측정 점의 형상 정보를 얻어내는데 측정 물체의 재질의 급속성과 단차가 매우 적은 경우에는 반사로 발생하는 광상 변환에 의한 오차13)를 무시할 수 없게 되어 수측에서 수측 난노미터의 초정밀 부품의 형상 측정에 있어 오차를 아끼지 않고 있다. 실제로 반도체 공정이나 초정밀 가공부품에 많이 쓰이는 금, 실, 알루미늄, 크롬 등의 급속은 약 10~30 nm의 측정 오차를 유반한다.15)16)

본 논문에서는 기존의 백색광간섭무늬법 비교하여 새로운 방법으로 백색광간섭무늬 특성을 제안한다. 본 간섭무늬법은 백색광의 편광을 고려한 반사 미래상변화용 간섭 대응공학의 영역. 그리고 백색광 주파수 특성에 의한 영향을 복합적으로 고려하여 재구성된다.

2. 백색광 간섭 무늬식

백색광주사간섭계의 원리는 백색광원에서 나온 조명광을 장 분산기에 의해 측정광과 기준광으로 분리하고 이를 각각 측정면과 기준면에 조사한다. 그러한 각 면에서 반사되어 되돌아 오는 광들이 서로 같은 광 경로(OFD)를 거치도록 하여 간섭신호를 형성하고 이를 분석함으로써 기준면에 대한 측정면의 3차원 표면형상을 측정할 수 있게 된다. 이사광이 단백색이라 가정하면 기준면과 측정면에서 반사되어 나온 두 광에 의한 간섭 무늬식은 다음과 같다.

\[I(x, y, z) = I_0 [1 + r \cos(2\pi h z + \Delta \alpha)] \quad (1) \]

여기서 \(I_0\)는 빛의 평균 강도, \(r\)는 단일 광장에서의
간섭물의 가시도, 그리고 Δx는 측정면의 기준면의 반사계수에 의한 위상차를 나타낸다. 식 (1)에서 입사광은 백색광이라 가정하여 광원의 대역폭에 의한 영향만 다룸을 고려해 주면 식 (2)와 같이 백색광에 대한 간섭
무늬식을 나타낼 수 있다.

$$I(x, y, z) = \int \frac{k}{2} F(k) \left| P(\theta)(1 + y \cos(2k(h - z)) \cos \theta + \Delta x h(k)) \sin \theta \right| dk$$

여기서, k는 중심파수, Δk는 광원의 대역폭, $F(k)$는 광원의 주파수 분포함수, $P(\theta)$는 입사각에 따른 광원의 조명함수이다.

3. 편광을 고려한 반사시 웅장 변화

앞서 설명한 백색광적단계의 간섭무늬는 입사광이 백색광의 편광에 대한 가락이 없다. 그리고 편광 상태에 따른 반사물 고려할 때, 대물렌즈를 이용하는 적단계에서는 입사광이 성정
편광 되어 있다고 하여도 측정면에 조사되는 광이 대물렌즈에 의하여 입사각이 변하더라도, 조사되는 광의 위치에 따른 입사면(placement of incidence)도 달리지므로 반사광의 편광은 복잡한 형태로 기술된다.112)

$$E = \begin{pmatrix} E_x \cos \phi \\ -E_x \sin \phi \end{pmatrix}$$

(식 6)

(6)

(112)

(a) Over View

(b) Top View

Fig. 1 change of polarization due to the objective lens121)

Fig. 1. (a)는 대물렌즈에 입사되는 빛의 방향에 따라 편광 성분이 달라지는 것을 보여 주고 있다. 대물렌즈를 Fig. 1 (a)와 같이 얇은 렌즈(thin
lens)로 모델링을 하고 x, y, z 좌표계를 설정한 다음 측정에서 기준면 p, x 쪽에서 원주 방향으로 각도 ϕ지점을 통과하는 광선(ray)이 입사각(θ)에
따라 성장면에 조사되다고 생각하자.

이때, 입사면에 따라 편광성분이 달라질 수 있기 때문에 이를 Fig. 1 (b)와 같이 모델링하여 입사면에 따른 수평 성분(p-편광파)과 수직성이
悩み(s-편광파)로 분류할 때 주목할만하다. 렌즈에 입사되는 빛의 편광의 Fig. 2 (b)에서 같은 x, y 좌표계를 기준으로 우선은 x 쪽 방향으로만
편광된 빛(E_x)이 입사하였다고 가정을 한다.

그리고 x 쪽에서 p 모드 방향으로 ϕ위치에서 x 쪽 방향으로 성정 편광된 입사광 E_x는 입사면에
편광한 p 쪽과 수직성의 s 쪽 방향을 따라 식 (6)과 같이 수평 성분(p-편광파)과 수직 성분(s-
편광파)로 분류로 나누어 생각할 수 있다.

$$E = \begin{pmatrix} E_x \cos \phi \\ -E_x \sin \phi \end{pmatrix}$$

(식 7)

따라서 측정면에서 반사되는 광은 E_x, 기준면에서 반사되는 광은 E_x, 분광기에서 기준면까지의
거리 l_1, 분광기에서 측정면까지의 거리 l_1, 측정면에서의 p-편광파와 s-편광파의 Fresnel 반사
계수의 조합을 R_p, R_s, 기준면에서의 p-편광파와
s-편광파의 Fresnel 반사계수의 조합을 r_p, r_s 라
들면 E_x 과 E_x은 식 (8)와 같이 표현할 수가 있다.

$$E_r = \frac{1}{2} e^{i\phi} \frac{R_p + R_s \cos 2\phi}{R_s \sin 2\phi}$$

(8)

277
\[E_0 = \frac{E}{2} e^{i\omega} (r_+ + r_+ \cos 2\theta) \]
\[(R_+ = R_x + R_y, \quad R_- = R_x - R_y, \quad r_+ = r_+ + r_+ \cos 2\theta) \]
\[\text{(8)} \]

따라서, \(E_0 \)과 \(E_x \)에 의해 약간의 간섭 신호 획득 식 (9)의 같이 된다.
\[I_{xx} = (E_0 + E_x)(E_0 + E_x) \]
\[\text{(9)} \]

여기서, \(\sigma \)는 Hermitian 행렬을 의미하고, \(I_{xx} \)는 양측에서 \(p \), 원주방향으로 각도 \(\phi \)를 대응하는 각각의 조절에 의한 간섭 신호에 나타내는 것이다. 따라서 폭행에 따른 간섭의 간섭 신호를 나타내 주면 식 (10)과 같이 나타낼 수 있다.
\[I_{xx} = \frac{E^2}{2} \left| e^{i\omega (1\cdot1)}(r_+ + r_+ \cos 2\theta) \right|^2 + \frac{E^2}{2} \left| (I_{xx} + \frac{1}{2}(I_{xx} + I_{xy})) \right|^2 \]
\[\text{(10)} \]

결국, 간섭무늬를 얻기 위해 수치적분을 통해 계산을 하게 되는 식은 식 (10)을 각각 \(p \)와 \(k \)에 대해 이중 적분을 해 주게 되는 것이다. 식 (10)을 통해 최종적으로 얻게 되는 간섭 무늬식은 식 (11)이 된다.
\[E' \left(f_{(1)} \right) \left(\frac{(r_+ + r_+ \cos 2\theta)}{2} \right)^2 + E' \left(f_{(2)} \right) \left(\frac{(r_+ + r_+ \cos 2\theta)}{2} \right)^2 \]
\[\text{(11)} \]

식 (11)을 계산하게 되면 간섭 신호에 대해 관찰성을 고려해 측정 환경의 반사식 위상 변화가 고려된 적분식이라고 할 수 있다. 따라서 이의 식들을 간섭의 백색후 주사 간섭계를 통해 수치적분을 해 주어야 함으로써 폭행 성능에 따른 반사식 위상변화에 대한 변화 등을 고려해 줄 수 있는 것이다.

3. 폭행을 고려한 반사식 위상 변화

백색광 간섭무늬의 결정은 가시도 영부의 최고점인 가시도 결정(envelope peak)과 간섭무늬가 최대값을 갖는 위상 결정(fringe peak)으로 나타난다. 식 (11)을 살펴보면 백색광저주사간섭무늬의 최고점점은 주사 거리 \(z \) 가 몰래거리 \(h \)와 일치할 때, 즉 \(z = 2h(x,y) \)인 경우 발생한다. 그러므로 측정표면의 각 점에서 발생된 각각의 점점이 위치하는 \(z \) 값을 검출해 몰래거리 \(h \)을 얻고 이를 측정표면의 모든 점에 대해 재구성하면 삼차원 형상측정이 이루어진다. 하지만 서로 다른 금속 표면을 이루어진 단차가 있는 시험판 백색광저주사간섭계로 측정을 하게 되면 금속 표면의 반사식 발생하는 위상 변화로 인해 측정 표면 높이가 영향을 받게 된다. 이로 인해 백색광 주사 간섭계로는 정밀한 공부물과 같은 미세 단차를 측정할 경우에는 금속 표면의 반사식 위상 변화로 인한 간섭 무늬의 변화가 측정 오차를 유발하게 된다. 따라서 이러한 반사식 위상 변화에 대한 영향을 충분히 알게 된다면 이를 통해 측정 물질에 대한 보정을 할 수 있다. 본 논문에서는 금속 표면의 반사식 위상 변화로 인한 간섭 무늬의 가시도 결정(envelope peak)과 위상 결정(fringe peak)의 변화로 식 (11)을 수치 해석적으로 계산해 볼 필요로 삼아보았다. 간섭무늬의 가시도 결정(envelope peak)과 위상 결정(phase peak)이 금속계로 반사식 위상 변화에 의해 얼마나 변화된지를 시뮬레이션을 해 보았다. 반사식 위상 변화가 일어나지 않는 경우 조정자가 0이 되는 경우가 가시도 결정 (envelope peak)이 되지만, 반사식 위상 변화가 일어나는 경우 조정자가 0이 되는 경우는 가시도 결정(envelope peak)이 되는 점이 서로 달라지게 된다. 물론 아니라 위상 결정 (fringe peak)도 달라지게 된다.

![Fig. 2 Movement of envelope peak & fringe peak due to phase change on reflection](image)

따라서 이러한 영향이 금속마다 어느 정도만을 알아 보기 위해 Fig.2에서 보는 바와 같이 폭
정조각이 0이 되는 지점에서부터 가시도 결정(envelope peak)과 위상 결정(fringe peak)까지의 거리를 각각 D1, D2라고 늘고, 이를 수치 해석적으로 계산해 보았다. 참고로, 기준 미리의 설정은 암흑무늬(A1)이라고 가정하고 금속

278
별로 반사시 위상 변화에 대한 간섭무늬의 변화를 알아보았다. 시뮬레이션 결과는 다음과 같다.

| Material | D1 | D2 | |D1-D2|
|----------|------|------|------|
| Ni | 3.88 | 7.73 | 3.85 |
| Cu | 6.47 | 15.32| 8.85 |
| Au | 14.39| 16.33| 1.94 |
| Ag | 21.13| 12.94| 8.19 |
| Pt | 1.35 | 4.96 | 3.61 |
| Molybdenum| 9.57 | 0.44 | 10.01 |

Tabel 1. Distance of envelope peak & fringe peak from the position where OPD is 0 due to phase change on reflection

4. 결론

본 논문에서는 백색광투사간섭계에서 백색광의 두 광원성분을 수직 광원성분과 수평 광원성분을 고려한 간섭무늬 식을 계산하고, 이를 이용해 금속 물질의 반사시 발생하는 위상변화에 의한 영향을 시뮬레이션을 통해 알아보았다. 시뮬레이션 결과 반사시 발생하는 위상 변화로 인하여 각 금속별로 간섭무늬의 가시도 정점과 위상 정점이 이동함을 알았다. 특히, 은의 경우에는 반사시 위상변화로 인해 가시도 정점이 21.13 nm, 위상 정점이 12.94 nm 올직였다.

그러나, 시뮬레이션의 결과를 검증하기 위한 방법으로 백광 시험판과 은 시험판의 경우, 반사시 위상 변화에 의한 간섭무늬정점의 위치 변화를 간단히 알 수 있었다. 실험을 통해 얻은 간섭 무늬로는 경로차(ODF)가 0인 점을 정확히 알 수 없기 때문에 간섭 무늬의 가시도 정점(envelope peak)과 위상 정점(fringe peak)이 반사식 위상 변화로 인해 어느 정도 이동하였는지를 알아보았다. 그 결과 가시도 정점과 위상 정점의 위치 차이가 백광 시험판 경우 3.24 nm, 은 시험판 경우 7.66 nm로 시뮬레이션을 통해 얻은 결과인 3.61 nm, 8.19 nm와 거의 비슷함을 알았다.

백색광투사간섭계는 간섭무늬의 가시도 정점이나 위상 정점을 이용해 측정 시전의 높이 정보를 얻기 위해서 금속 시험판을 측정한 경우에는 금속 시험판의 형상 뿐만 아니라 반사시 발생하는 위상 변화에 의한 영향으로도 간섭무늬의 정점이 응적이게 된다. 그러한 경우 여전히 관찰하기 위해 간섭무늬의 정점의 위치가 높이에 간섭조건과 백색광의 형상에 따라 달라지게 된다. 따라서 현재 백색광투사간섭계에서 금속 시험판을 측정할 경우 반사시 발생하는 위상 변화에 대한 영향을 미리 고려해 보았을 때 적합하다.

참고문헌

279