하드터닝에서 CBN 공구홀더의 열변형이 가공정밀도에 미치는 영향

노승국(KIMM), 이찬홍(KIMM), 하재용(대우중합기계)

Analysis of Thermal Displacement of PCBN Tool Holder for Machining Accuracy in Hard Turning

S. K. Ro(KIMM), C. H. Lee (KIMM), J. Y. Ha(Daewoo Heavy Industries & Machinery LTD.)

ABSTRACT

The hard turning is a turning operation performed in high strength alloy steels (HRC>30) in order to reach surface roughness close to those obtained in grinding. This is possible because of availability of improved tool materials (polycrystalline cubic boron nitride, PCBN), ad more rigid machine tools. According to many previous work of hard turning mechanism, the maximum temperature of cutting can be raised up to 1000°C. As the heat generation rate is very high, the thermal displacement of tool holder cannot be negligible. Therefore, the aim of this paper is to analyze effects of high heat generation at CBN tool tip to the thermal displacement of a tool holder in hard turning and finally geometric accuracy. The thermal behavior of a CBN tool holder is investigated by numerical simulation and experiment, and the result shows thermal elongation of microns order is possible during hard turning process.

Key Words: hard turning (하드터닝), thermal displacement of tool holder (공구홀더 열변형), finite element analysis(유한요소 해석), geometric accuracy(행정정밀도)

1. 서론

하드터닝(Hard Turning) 기술은 고효율, 성능 멜브류, 피스트론 등 열처리한 열처리된 고정도 재료를 CBN 선삭공구를 이용하여 IT5 이상의 차수공저와 표면조도 2 μm이하의 정밀공작하는 것으로 다양한 가공분야에 적용이 될 수 있고 고가의 연삭공정을 절감으로 대신할 수 있는 공의 가공기술로 알려져 있어 10 년간 전부터 자동차 부품공급을 중심으로 발전되고 있다. 하드터닝은 일반적으로 연삭을 대신할 수 있는 가공방법으로 일반 선삭공의 차이점은 절삭공구 길이에서 이루어질 경도로 미소 절삭 깊이를 가지고 있고 절삭면에서 배분한의 크기가 커서 기계의 정상이 가지는 정밀도가 가능된다. 이러한 하드터닝의 공작적인 목적은 고정밀의 가공 정밀도를 얻는 것이므로 공작물 표면의 조도는 물론, 기계 구조물이나 공작물의 발열에 의한 차수정밀도 및 내구도가 중요한 부분이라 할 수 있다. 특히, 강도가 높은 열처리된 공작물 CBN 공구로 가공하는 하드터닝 기계공구에서의 발열은 일반 가공에 비하여 매우 커서 절삭 온도가 크게 증가할 수 있다. 하드터닝 기계공구에서 발생하는 열에 대해서는 이론과 실험적을 많은 연구가 진행되어 왔다. 특히 가공면의 표면조도 등의 품질과 공구 수명, 마모 등에 대한 관점으로 주로 연구되었으며[1][2][3] 이러한 관점에서 측정한 결과를 보면 커터의 절삭부위에서의 온도가 1000°C 이상으로도 상승할 수 있는 결과가 보고되고 있다.[4] 이러한 발열량은 건식공작기계 에는 대부분 볼룰러를 통하여 전달되다고 할 수 있으나, 에어 냉각 공구홀더의 열변위는 편안적으로 발생하게 된다. 이에, 공구부의 온도가 높아지면 하지 나 작은 크기가 연하여 열변형은 크지 않으나 상대적으로 크기가 큰 볼룰러의 열변형은 공구의 변수를 반영시키는 공작물의 차수정밀도를 해칠 수 있으므로 이러한 볼룰러의 열변형에 대하여 가공정밀도에 미칠 수 있는 영향에 대하여 해석할 필요가 있다.
본 연구에서는 하드타닝에 적용되는 PCBN 공구의 허용에 대하여 발열조건에 따른 온도분포와 열변형량을 수치해석 및 실험적인 방법을 이용하여 분석하고 실제 가공시 가공정밀도에 미칠 수 있는 영향을 예측하였다. 수치해석은 실제 허용도를 모델링하여 하단가공소요법을 이용하여 해석하였으며 해석결과 허용도의 온도상승에 의한 공구단면 열변형량이 가공 공정 이상으로 나타날 수 있음을 알 수 있었다. 또한 허용도에 CBN 커터를 장착한 상태에서의 가열실험을 통하여 공구 허름에서도 온도 분포와 열변형을 측정하였으며 이러한 결과를 토대로 공구 antibiot에서의 열변형에 의한 가공 정밀도의 영향을 예측하였다.

2. 허름도의 열변형 해석

2.1 하드 타닝시 CBN 공구에서의 발열

CBN 공구를 이용한 고경도 재질의 하드타닝시에 발생하는 열은 하드타닝열 인장공정을 대체하기는 하지만 기본적으로 섬식공정으로 표면조건과 함께 표준품도가 매우 중요하다. 대체로 공작기계의 열변형은 검정판의 두께, 주로 주축대와 이송계의 발열에 의한 기계 구조물의 열변형에 대하여 설계 사부의 고려의 대상이 되나 가공에서의 발생에 대해서는 표준품도가 가공 안정성, 품의 수명과 같은 관련에서 깊이게 되어 연구들이 진행되어 왔다. Ueda 등의 연구결과를 보면 하드타닝시의 가공부의 온도가 최대 1000℃까지 증가할 수 있다고 한다. 이러한 고열량은 확산을 통한 내력이 이어져지 않는다면 공구허름에 대하여 전달될 것을 예측할 수 있다. 이러한 발열은 공구형태의 열변형을 발생시킬 수 있으며, 이때의 발열은 가공물의 형상정밀도에 영향을 미치게 될 수 있으므로 이러한 허름도의 열변형을 해석할 필요가 있다.

2.2. 해석모델 및 해석조건

이러한 공구형태의 열변형을 예측하기 위하여 유한요소법을 이용한 시뮬레이션을 수행하였다.(ANSYS 6.0 사용) 대형 모델로는 주로 사용되는 외경 가공공구(TNMN11034E, PCBN)와 공구형태 (CTJNR/R2525M)를 모델링 하였으며 이때 해석에 적용될 각 계절의 물성치는 Table 1과 같이 요소는 SOLID87과 SOLID92를 사용하였다.

경계조건은 허름도 지지부에서 공구대를 통한 열전달을 고려하였으며 나머지 부분에 대하여는 상온에 의한 자연냉각을 가정하였다. 또한 변위는 3면에 대하여 각각 X, Y, Z 방향 변위를 고정하였다.

이러한 해석을 위한 유한요소 모델은 Fig.1에 나타내었으며 결과 결과를 위한 결과들을 표시하였다.

Fig. 1 The model of a tool holder and a PCBN cutter for numerical simulation.

<table>
<thead>
<tr>
<th>Material</th>
<th>Cutter (PCBN)</th>
<th>Tool Holder (Steel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of Elasticity [Gpa]</td>
<td>680</td>
<td>205</td>
</tr>
<tr>
<td>Density [g/cm³]</td>
<td>4.00</td>
<td>7.95</td>
</tr>
<tr>
<td>Thermal Conductivity [W/m°C]</td>
<td>100</td>
<td>48.6</td>
</tr>
<tr>
<td>Heat Expansion Ratio</td>
<td>0.45e–5</td>
<td>1.15e–5</td>
</tr>
<tr>
<td>Specific Heat [J/kg°C]</td>
<td>780</td>
<td>450</td>
</tr>
</tbody>
</table>

2.3 발열조건에 따른 해석결과

가공물의 발열량은 접속특성, 금속, 재질 등의 가공조건에 따른 영향을 대략적으로 측정하여 본발열량을 계산하기 위해서는 실시간 시뮬레이션이나 가공 실험을 통한 측정이 필요하다. 그러나 본 연구에서는 발열에 의한 허름도 변형의 해석을 목적으로 연구되어진 결과를 이용하도록 한다. 우선, CBN 물의 가공부위의 한계의 점검(332)에서의 온도가 900℃로 가열된 경우의 온도 분포와 열변형의 크기를 해석한 결과는 Fig. 2와 같이 허름도의 온도는 40℃을 넘지 않을 수 있으며 이때의 전체 열변형률은 약 5.6мm정도임을 알 수 있다.
그러나 실제로 한 점에서 가공이 일어나는 것이 아니고 일정한 절삭깊이를 가지고 일어나게 되므로 일정온도에 대한 조건보다는 가공 부문 노드의 발열을 주는 것이 좀 더 실제 조건에 근접한다. 따라서 가열조건을 절삭깊이 0.2mm 정도로 강화하여 4개의 노드에 가열하는 방법을 적용하였다. 4개 노드의 열량함이 20W일 때 가공부위(Cut-1)에서의 온도는 1097°C를 나타내었으며 Fig. 1에 표시된 각 부분의 열량변화에 따른 온도분포와 공구홀더 길간에서의 열변형은 각 Fig. 3과 Fig. 4와 같다. 이렇게 한 개의 열량에 온도를 적용한 경우보다 온도 및 변위의 증가가 크게 나타난 것을 알 수 있다. 주로 가공정밀도에 영향을 줄 수 있는 Z방향 변위는 약 15㎛ 정도로 가공 공차에도 영향을 줄 수 있는 변위임을 알 수 있다.

2.4 가열에 따른 시간응답

이러한 가공의 발열은 가공시간에 따라 오랜 시간 지속될 수도 있으며 때로는 짧은 시간만 적용될 수도 있다. 따라서 시간에 대한 응답을 예측할 필요가 있다. Fig. 5는 0.2mm의 절삭깊이를 가정한 조건에서 20W 발열시 각 부분의 온도와 변위 특성은 나타내고 있다. 상대적으로 열전도계수가 큰 커터 부분의 경우 온도증가가 비례하게 나타나고 있으나 롤러부분의 안정시간은 상대적으로 짧음을 알 수 있다. 이때, 롤러한 선단에서의 열변위는 롤러부분의 온도상승 폭선과 비슷한 기울기를 보이고 있으며 변위가 안정되는데 약 7분 정도의 시간이 걸리는 것으로 나타났다.

Fig. 5 Transient analysis for 20W total heat flow

2.5 롤러더 열변형의 가공정밀도 영향 예측

열변형이 발생할 경우 의열가공에 있어서 변위가 발생하면 공작물과 공구간의 기계강성을 고려하여 가공 오차를 예측할 수 있다. 즉, 자유단에서 공구부의 변위를 δ0라고 하고, 이때의 공작물과 공구대간의 기계 상태 강성을 Ks로 롤러드의 둘출부분 강성을 Kp라고 할 때 이때의 최종변위는 다음의 식(1)과 같이 나타난다. 롤러할의 둘출부위가 끝나서 Kp가 매우 큰 경우 공구의 변위는 열변위와 같거나를 알 수 있다. 이 변위는 실제 가공시의 가공 급여의 변화로 나타날 수 있어 영구정밀도에 영향을 주게 된다. 즉 2.4절의 조건과 같이 발열이 큰 상태로 5분이상 가공하는 경우 초기에 비하여 최소오차가 12㎛이상 발생할 수 있음을 알 수 있다.

\[
\delta = \frac{K_p}{K_p + K_s} \delta_0 \approx \delta_0 \tag{1}
\]

3. 공구홀더의 열변형 실험

가공중의 롤러더의 열변형을 측정하는 것이 중요하지 않으므로 롤러드의 열변형을 예측하기 위하여 롤러와 CBN공구를 이용하여 롤러드 열변형을 측정하였다. 실험에 사용된 설계장치는 Fig. 6과
같이 공구 굽단에 온도조절이 가능함 가열기로 가열을 하고 이때의 불돌이에서의 온도변화를 열전도 를 이용하여 측정함과 동시에 불돌이 굽단에 온상형 변위센서(12.5 μm/V, resolution 0.04 μm)를 설치하여 열변위를 열전도를 측정하였다. 열전도에는 커퍼의 머리부분(Holder1, 해석기 Cut1)과 불돌이와 어착부의 상부 머리부분 (Holder1, 해석기 TH-Mid) 그리고 하부부(Holder2, 해석기 TH-Spit)의 온도를 측정하였으며 가열기의 온도는 비접촉 온도계로 측정하였다. 가열부분의 온도는 해석기의 값이 위치에 따른 온도구역에 고유로 직접적인 측정의 정확도를 확보할 수 없어 측정하지 않았다.

Fig. 6 Experimental setup for measuring tool holder thermal displacemen and temperature

Fig. 7 Experimental result temperature and displacement of tool holder

이제 가열부의 온도와 접촉부의 변화를 변화시켜가며 온도와 변위를 측정한 결과가 Fig. 7에 나타나 있다. 가열온도는 초기에 200℃로 가졌으며 20 분 후에는 가열면적이 약간 증가했고 60분에서 온 도는 300℃로 증가하였다. 최종적인 커퍼와 불돌이 접촉부(Cut1)의 온도는 약 38℃였으며 불돌이 굽 단의 측정을 위해 약 13 μm량 나타났다. 또한 변위의 증가 양상을 보면 불돌이의 온도 증가보다 약간 높은 시술상태를 가지고 있음을 알 수 있어 열변위가 안정화되는 시간은 적어도 20분 이상 소요 되는 것을 알 수 있다. 여기서 불돌이상단 (Holder1)의 온도가 30℃이상 되면 온도차이가 있음을 경우 변위는 10 μm이상 발생할 수 있음을 알 수 있다.

이러한 결과를 정량적 해석결과와 일치하지는 않는데, 이는 접촉면적과 열적 환경이 실제 가공공정 상태 및 해석기의 가정들과의 차이에서 원인을 찾을 수 있다. 그러나 정량적으로는 매우 유사한 결과를 보이고 있으며 실제 가공상태의 조건에 따라 불돌이의 발열은 가공공정도에 영향을 줄 수 있음을 알 수 있다.

4. 결론

지금까지의 연구결과에서 본 연구에서는 하드타
닝 가공시의 발열에 의한 불돌이의 열변형이 가공
공정도에 미치는 영향을 예측하기 위하여 수치해석
및 실험을 통하여 공구굴의 온도 및 열변형을 해
석하였다. 해석결과 0.2mm 정도의 열상격이에서 절
삭부의 온도가 1097℃까지 오르는 열변화에서 가
공공방향 열변형은 14 μm까지 발생하였으며 가
공공질을 통한 측정 결과 불돌이의 온도가 10℃ 증
가하였을 때 13 μm의 변위가 발생하며 시간통합을
통해 실제 가공공정도에서도 발열이 큰 조건에서 수
분이상 가공하는 경우 불돌이의 변형이 가공공차
이상으로 발생하여 형상공정도에 영향을 줄 수 있음
을 예측할 수 있었다.

이러한 영향이 실제 가공공정도에 미치는 영향을
정확히 해석하기 위하여 앞으로 가공실험을 통한
검증을 수행할 예정이다.

참고문헌

1. H. K. To nshoff, C. Arendt, R. Ben Amor, “Cutting
Hardened Steel”, Annals of the CIRP, 49/2, Keynote
paper, 2000
2. Takashi Ueda, Mahfudz Al Huda, Keiji Yamada,
Kazuno Nakayama, “Temperature Measurement of
CBN in Turning of High Hardness Steel”, Annals of
the CIRP Vol. 48, pp. 63-68, 1999
3. X.L. Liu, D.H. Wen, Z.J. Li, L. Lao, F.G. Yan,
“Cutting Temperature and Tool Wear Of Hard Turning
Hardened Bearing Steel”, J. of Material Processing
Mechanisms in Hard Turning With Polycrystalline
Cubic Nitride Tools”, Wear, Vol. 250, pp. 576-586,
2001