타원형 고체잠입렌즈를 이용한 근접장 광자기 기록

박재혁(연세대 대학원 기계공학과), 이문오(연세대 대학원 기계공학과)
박노철(연세대 정보저장공학과), 박영필(연세대 기계공학과)

Magneto-Optical Recording in Near-Field using Elliptic Solid Immersion Lens

N. C. Park(CISD, YSU), Y. P. Park(Mecha. Eng. Dept., YSU)

ABSTRACT

In conventional optical data storage numerical aperture (NA) cannot be over 1 because of diffraction limit. To overcome this limitation, solid immersion lens (SIL) have produced a great interest in near-field optical data storage. In conventional optical recording method, the dual lens system using object lens and SIL had been studied generally. But the conventional SIL system has some critical problems that must be solved. The problems are heat, contamination, alignment of optical components and so on. To solve these problems, this work proposes enhanced SIL which has several advantages for mechanical and optical issues. This new SIL system named elliptic SIL(ESIL) can use evanescent energy in near-field more effectively. In addition, because of applying the inside recording unlike previous surface recording, ESIL can clear up the problems. The design and analysis of ESIL are executed by using CODE V. Also, in this paper we composed actual data recording system and achieved recording experiment by applying ESIL to magneto-optical recording. In conclusion, we analyze the improvement of aerial density and the reasonability of application to real data storage system.

Key Words: 타원형 고체잠입렌즈(Elliptic solid immersion lens:ESIL), 광자기 기록(Magneto-optical recording), 근접 장(Near-field), 소멸과 에너지(Evanescent energy)

I. 서론

1990년대 초반 이래로 광 저장 장치의 고용량화를 실현하기 위해서 고체잠입렌즈(solid immersion lens : SIL)에 관한 많은 연구가 진행되어 왔다. 그나 태부분 대제료와 고체잠입렌즈를 이용하여 점광에 고체잠입렌즈의 바닥면에 접촉시켜 기록과 재생을 하는 표면 기록방식이 연구되었으며, 이러한 연구는 높은 계수(NA)를 실현할 수 있었으나 고체잠입렌즈의 비디오 사이의 영역과 오염, 그리고 렌즈의 조립 등에 있어서의 기계적인 오차 등 실감할 문제를 유발하였다. 이에 우리는 앞서 언급된 문제들을 해결하기 위해서서 소멸과 에너지를 이용하여 정보저장 장치의 고용량화에 있어서 핵심 기술이라 할 수 있는 근접장 기록 기술을 효과적으로 광 저장 장치에서 실현함으로써 높은 계수(NA>1)의 발생이 가능한 새로운 개념의 고체잠입렌즈를 제안하였다.

또한 자기시(FDD, HDD), 광(ODD), 그리고 광자기 (MO) 등 다양한 방식의 정보저장 장치 중, 특히 자기 기록방식에 비해 자가의 영향에 보다 뛰어난 안전성을 가지고 광 기록방식에 비해 보다 높은 데이터 전송률을 가지고도 수차원 성능을 가진 자가기 방식은 차세대 저장 장치로서 많은 관심과 연구가 진행되고 있다.

이에 본 연구에서는 근접장 이론에 근거하여 제안된 새로운 형태의 고체잠입렌즈를 광자기 기록방식에 적용하여 기록을 수행하고, 향상된 기록밀도
에 따라 다루었다.

2. 렌즈의 설계

2.1 렌즈의 이론적 설계

세르온 SIL의 설계에 따른 태양의 모양을 가지며, ESIL(Elliptic SIL)이라 명명하였다. 이 SIL은 대문은 없이 작은 디스크로 입사시켜 가폭증에 집중시키기 위해 시진 렌즈(Collimating lens)로부터 영향을 입차시킨다. ESIL의 설계는 그림 1을 통해서 설명된다. 식 (1)과 식 (2)의 폐쇄방의 원리(Fermat's principle)와 식 (3)의 스펙트럼의 법칙(Snell's law)으로부터 유도된다.

![그림 1 The geometrical shape of ESIL](image)

\[l_1 + l_2 = l_0 + l_1 + l_2 = \text{const} \]
\[n_1 l_1 + n_2 l_2 = n_0 z + n_1 (z - a) \cos \theta_1 + n_2 (z - a) \cos \theta_2 \]
\[\theta_1 = \sin^{-1} \left(\frac{n_2}{n_1} \sin \theta_2 \right) \]
\[n_0, n_1, n_2 \text{는 각각 공기와 렌즈, 그리고 보호층의 입자비율이다. } l_1, l_2 \text{는 각각 SIL과 보호층의 두께를 나타내며 } \theta_1, \theta_2 \text{는 보호층으로의 최대 입사각을 나타낸다. 식 } (2) \text{는 } z \text{에 대해 정리하면 식 } (4) \text{와 같게 된다.} \]

\[z = \frac{n_1 l_1 (1 - \frac{1}{\cos \theta_1}) + n_2 l_2 (1 - \frac{1}{\cos \theta_2})}{n_0 - n_1 \frac{1}{\cos \theta_1}} \]

\[y = (l_1 - 2) \tan \theta_1 + l_2 \tan \theta_2 \]

SIL의 형상은 \((z, y)\)의 평하도록 표시되며 식 (4)와 (5)로부터 SIL의 거리향 정보를 알 수 있으며, 개구수에 대한 시뮬레이션이 가능하다.

ESIL은 표면기록이 아닌 디스크의 보호층을 렌즈의 일부로 고려하는 개념으로, 내부기록을 함으로써 기존의 표면기록에서 유발되는 발명 문제를 발생하지 않는다. 또한 유호 개구수는 다음과 같이 정의된다.

\[N_{eq} = n_1 \sin \theta_1 \]

SIL의 광전섭이 적절에 따라 SIL의 비구면체의 표면은 작아진다. 즉 광학의 변수는 크게 변하지 않는다. 따라서 기계적인 정밀도가 함께되면서 반사 손실을 감소시킬 수 있다. \(n_1 = n_2 \)의 특별한 경우에는 렌즈와 디스크 사이에서는 광절없이 광이 전달하며, SIL의 형상은 태양이다.

\[n_0 z + n_1 \sqrt{x^2 + (z - a)^2} = n_1 a \]

여기서 \(a = l_1 + l_2 \)이다. 태양방정식은 광학 시스템의 매개 변수로서 표현될 수 있다.

\[\frac{(z - A)^2}{A^2} + \frac{x^2}{B^2} = 1 \]

여기서 \(A = a \frac{n_1}{n_1 + n_0}, B = a \frac{n_1 - n_0}{\sqrt{n_1 + n_0}} \)이고, 이 식은 \(e = a \frac{n_0}{n_1 + n_0} \)이다. 또한 렌즈의 비구면 형상을 표현하는 일반적인 수학공식은 다음과 같이 표현되며,

\[z = \frac{cx}{1 + \sqrt{1 - (k + 1)c^2x^2}} + Dx^4 + Ex^6 + Fx^8 + ... \]

\[c = \frac{n_1}{a(n_1 - n_0)} \]

\(c \)는 광학의 구체에서의 광절, \(k = -\frac{n_0^2}{n_1} \)는 konic 상수. 그리고 D, E 그리고 F는 각각 4, 6, 8차 방정식 상수이다. 이 방정식상수는 \(n_1 = n_2 \)일때 태양이 되므로 0이 된다.

2.2 렌즈의 수치적 설계

렌즈의 수치적 설계의 시뮬레이션을 위해 CODE: V를 이용하였다. ESIL은 660nm의 광원을 사용하고 ESIL과 보호층은 각각 PC(Poly Carbonate)를 사용하는 것으로 설계하였다. 시뮬레이션은 렌즈의 사용 가능 여부에 대한 적도인 MTF(Modulation Transfer Function)와 렌즈의 성능에 있어서 그 성능의 범위와 극한한 관계를 갖는 파편 수치에 대해 수행하였다. 성초를 위한 기본값은
Table 1 Required values for design

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0)</td>
<td>1.0003</td>
<td>Refractive index of air</td>
</tr>
<tr>
<td>(n_1)</td>
<td>1.57964236478</td>
<td>Refractive index of ESIL</td>
</tr>
<tr>
<td>(n_2)</td>
<td>1.57964236478</td>
<td>Refractive index of substrate</td>
</tr>
<tr>
<td>(t_1)</td>
<td>4.0mm</td>
<td>Thickness of ESIL</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0.1mm</td>
<td>Thickness of substrate</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>660nm</td>
<td>Wavelength of laser</td>
</tr>
</tbody>
</table>

ESIL 은 수차에 대한 성능 검사에 대해 안정적인 특성을 위하여 0.1mm 로 설계되었으며, 시험점의 구성성을 통하여 얻은 유효 계수는 \(N_{eff} = 1.212 \) 이다. Fig. 2 는 CODE V 를 이용하여 ESIL의 형상을 표현한 것이다.

![Fig. 2 The shape of ESIL obtained by CODE V](image)

MTF 설계는 전체의 공간주파수에 있어서 렌즈의 입력에 대한 출력의 대비를 보여주며 렌즈 평가의 핵심에서 매우 중요한 정보를 포함한다.

![Fig. 3 Modulation Transfer Function (MTF) curve](image)

실제로 경보장장기기의 기록의 재생에 있어서 MTF 설계는 데이터의 분해능에 직접적으로 관련하며, 선도에서 공간주파수에 따라 기울이기 값이 음으로 바뀌게 되면 정보의 분해가 불가능하게 된다. Fig. 3 은 0.01, 0.02, 0.03deg의 각도에 대한 MTF 설계를 보여주며, 안정적인 성능을 보임을 확인할 수 있다.

파면수차 역시 0.01, 0.02, 0.03deg의 각도에 대한 시험매트릭스를 수행하였다. 파면수차는 마찰의 종속 조건(Marchal's criterion)에 의해 정가하며, 파면수차가 0.07 \(\lambda \)가 넘지 않아야 한다는 조건이다. Table 2 는 ESIL의 각 각도에 대한 RMS 파면수차의 값이다. Table 2에서 보는 바와 같이 0.01, 0.02deg의 각도에 대해 ESIL은 만족할 만한 성능을 보이며, 0.03deg에 대해서는 성능이 다소 멀어지는 것을 확인할 수 있으나, 이는 성능과 기술에 대한 시험을 통하여 해결될 수 있다.

<table>
<thead>
<tr>
<th>Field</th>
<th>0.01 deg.</th>
<th>0.02 deg.</th>
<th>0.03 deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave-front aberration</td>
<td>0.0278 (\lambda)</td>
<td>0.0556 (\lambda)</td>
<td>0.0844 (\lambda)</td>
</tr>
</tbody>
</table>

3. 광학기 기록 설계

3.1 실험 구성

본 실험은 앞서의 설계과정을 통해 제작된 새로운 채널의 ESIL 을 실제 광학기 기록 시스템에 적용하고, 기록된 마크의 기록밀도에 있어서 향상하여 부를 평가하기 위한 것이다. Fig. 4 는 본 실험을 위해 구성한 광학기 기록 시스템의 실험장치 사진이다. 전체적인 설비 장치는 기록된 마크를 재생하는 제어단에서 배치되었으며, 기록片面에 대한 장치이다. 실험 장치는 크게 광학계, 자기계, 그리고 이송계로 나눌 수 있다.

![Fig. 4 Experimental setup for magneto-optical recording using elliptical solid immersion lens(ESIL)](image)
3.2 섬광 결과

기록기 기록 마크는 전광원의 이미지와 일치하여 확인이 가능하며 기록 마크의 크기를 확인할 수 있다. 전광원의 이미지의 음영에서 기록된 부분은 빛이 나타난 부분이다.

식 (11)에 의하면

\[
\frac{d}{N_{\text{eff}}} = \lambda
\]

이므로, 기록의 정밀은 544.5nm로 계산되며, 본 실험을 통해 얻은 것은 536.1nm이다. 실험과 사례에 이르기 위해 기록 이미지의 전반에 기록된 결과를 확인할 수 있다.

4. 결론

본 연구에서 기존의 광 보정장장치에서 회절 한계로 인해 NA가 1 이상 실현되는 것을 구현할 수 있는 방법으로 제안된 기존의 SIL 시스템은 보완한 새로운 방식의 ISIL을 설계하고, 이를 기록기에 기록 시스템에 적용하였다. 시뮬레이션을 통해 정 보정기기에의 적용 가능성을 확인하였고, 실험을 통해 시뮬레이션 결과와 부합함을 확인하였다. 실제 일반적인 설계용을 사용하는 ODD의 마크와 비교하였을 때, CD는 1.73 μm, DVD는 1.10 μm이었다. ESIL은 536.1nm으로 향상된 기록밀도를 얻을 수 있음을 확인할 수 있다.

본 연구는 2001년도 한국과학기술재단의 지원에 의하여 연구되었음.

참고문헌