입체요소를 사용한 플라스틱 렌즈의 사출형성 및 후변형 해석

박 근(서울산업대학교 기계설계·자동차공학부), 한철엽(삼성전기 중앙연구소)

Flow Simulation and Deformation Analysis for Injection Molded Plastic Lenses using Solid Elements

Keun Park (School of Mechanical Design & Automation Engineering, SNUT),
Chul-Yup Han (R&D Center, Samsung Electro-Mechanics Co.)

ABSTRACT

The present work covers three-dimensional flow simulation and deformation analysis of injection molded plastic lenses using solid elements. A numerical scheme to evaluate part deformation has been proposed from the results of injection molding analysis. Proposed scheme has been applied to the injection molding processes of optical plastic lenses: a spherical lens and an aspheric lens for a photo pick-up device. Through the simulation processes, residual stress is estimated and the final deformed patterns are obtained for both products. The reliability of the proposed approach has also been verified in comparison with the results of real experiments.

Key Words: Optical lens (광학렌즈), Aspheric lens (비구면렌즈), Injection Molding (사출형성), Finite Element Analysis (유한요소해석), Solid Element (입체요소), Deformation Analysis (변형해석)

1. 서론

렌즈는 광학제품의 성능에 직접적인 영향을 미치는 주요 부품으로서, 고정도의 형상 및 안정성 내부분해요요는 요구하는 정밀 부품이다. 렌즈는 사용 재질에 따라 유리 렌즈와 플라스틱 렌즈로 구분되는데, 이 중 플라스틱 렌즈는 주로 사출형성 기법으로 제작되어 생산성이나 가격 경쟁력 측면에서 장점이 있는 반면, 성형시의 형상정밀도 및 광학적 특성 확보가 힘들다. 이를 위해 광학적 특성을 고려한 렌즈 설계기술, 급형설계 및 가공기술, 형광 사출형성기술 등이 요구되며 특히 사출형성 과정의 수치해석(Computer Aided Engineering; CAE) 기법을 통해 렌즈 설계용 기법 및 공정설계를 위한 목적으로 시도되고 있다.

현재까지의 대부분의 플라스틱 렌즈의 사출형성 해석에 관련된 연구는 단면방향 2차원 유동으로 가정한 해석 모델을 적용하고 있다. 따라서 입체적 으로 정의되어 있는 제품의 형상을 정확히 재현하기 어려운 문제가 발생하는 단점이 있다. 이에 기반하여 2차원 박막요소(shell element)를 사용한 유한요소 격자를 생성하여 해석을 수행한다. 이러한 제품형상의 단순화는 제품의 기하학적 형성정도가 왜곡된다는 단점을 가지고 있으며, 특히 사출 렌즈의 경우 두께에 대한 특성일이의 적그다시 말하지 않아 두께방향의 유동이나 압력구배를 무시할 경우 해석의 신뢰성에 심각한 영향을 미치게 된다.

광학 렌즈는 특정 광학계 내에서 입사광을 원하는 위치에 조정을 떨어줄 수 있도록 준정확수주는 역할을 하며, 이러한 기능을 수행하기 위해 대부분의 렌즈는 두께가 연속적으로 변하는 특성을 갖고 있다. 따라서 기존의 박막요소 기반 접근법으로는 두께의 연속적인 변화를 정확하게 고려할 수 없다. 또한 렌즈의 양쪽 면의 경밀도가 광학적 특성에 복합적 영향을 미치므로 양쪽 면 모두에 대한 평가가 필요하다. 이러한 특성을 고려할 때 렌즈의 사출형성해석 및 변형해석을 위해서는 입체요소를 사용한 접근이 타당하다고 판단된다.

박막요소 기반 해석기법의 문제점을 개선하기 위해 최근 들어 3차원 박막요소를 사용한 사출형성
의 유동방정식(12) 및 제품 이형후의 후변형방정식(13)에 관한 연구가 진행되어왔다. 본 연구에서는 상기 연구 결과와 마찬가지로 임계효소를 사용하여 중전, 보임, 낙하과정에 대해 사출성형 형성을 수행하고 해석 결과로부터 금형 내의 온도 및 압력분포에 대한 연구를 도출하였다. 도출된 온도이력 정보를 사용하여 금형내에서 발생되는 장류응력을 계산하고, 이를 토대로 이형 후의 열변형 해석을 수행함으로써 렌즈의 외관 변형량을 예측함으로써 제안된 방법의 신뢰성을 입증하고자 한다.

2. 사출성형품의 변형해석 수식화

본 연구에서는 사출성형품의 후변형 해석을 위해 온도변화에 의한 장류응력을 고려하였다. 이때 액체상태에서 발생하는 장류응력은 무시하였고, 응고된 고분자 수지에 대해서는 선형 탄성체로 가정하여 해석을 수행하였다. 이때의 폐형방정식 및 구 성방정식은 다음과 같다.

\[\vec{V} \cdot \sigma + \dot{\gamma} = 0 \]
\[\sigma_v = C_m(\dot{\varepsilon}_v - \alpha \delta_v \Delta T) \]

이어서 \(\alpha \)는 열팽창계수로 고분자수지의 비체적 (specific volume) 값으로부터 얻어졌다. 비체적은 \(\text{Ten} \)의 상태방정식을 사용하여 다음과 같이 온도와 압력의 함수로서 표현된다.

\[v(T,p) = v_0(T) \left[1 - C \ln \left(1 + \frac{p}{B(T)} \right) \right] \]

위 식에서 \(v_0(T) \)와 \(B(T) \)는 각각 다음과 같다.

\[v_0(T) = \begin{cases} h_v + h_v \bar{T}, & \text{for } T > T_c \vspace{0.2cm} \\ h_v + h_v \bar{T} / \bar{T}, & \text{for } T < T_c \end{cases} \]
\[B(T) = \begin{cases} h_v \exp(-h_v \bar{T}), & \text{for } T > T_c \\
 h_v \exp(-h_v \bar{T} / \bar{T}), & \text{for } T < T_c \end{cases} \]

이어서 \(\bar{T} \)와 \(T_c \)는 각각 유호온도 및 전이온도 (transition temperature)를 의미하며, 다음과 같이 온도와 압력의 함수로서 표현된다.

\[\bar{T} = T - h_v \]
\[T_c(p) = h_v + h_v p \]

이때 \(b_v \)는 고분자수지 물성에 따른 계수이다. 한편 열팽창계수는 비체적을 온도에 대해 미분하여 다음과 같이 얻어진다.

\[\alpha = \frac{1}{3} \frac{\partial v}{\partial T} = \frac{1}{3} \left[\frac{C}{B(T)} \left(1 + \frac{p}{B(T)} \right) \right] + \frac{1}{v_0} \frac{\partial v}{\partial T} \]

위와 같은 수식화를 사용하여 금형내의 장류응력을 계산할 수 있다. 이때 임계효소를 사용한 사출성형 해석 결과로부터 단계별 온도분포의 여력 을 추출하여 장류응력 해석 및 이형후 열변형 해석의 입력 데이터로 사용하였다. 이때 3차원 확장구조에서 제약변의 조건을 자동 추출하여 장류응력 계산시의 경계조건으로 부수해제하였다. 또한 계산된 장류응력을 고려하여 이형 후 수지의 상온에 도달할 때까지의 열변형 해석을 수행함으로써 제품의 과정 변형을 예측하였다. Fig. 1에 이러한 과정을 개념적으로 도시하였다.

Fig. 1 Schematic procedure for deformation analysis

3. 플라스틱 렌즈의 사출성형 및 후변형해석

3.1 구현렌즈의 변형해석

본 연구에서 제시한 방법의 타당성을 검증하기 위해 Lu와 Kim의 관련 연구결과(10)을 참조하여 렌즈 사출성형해석 및 변형해석을 수행하였다. 렌즈의 형상을 살펴보면 한쪽 면은 복곡 다른 반대쪽 면은 오목한 구현렌즈로 Fig. 2에 형상을 도시하였다. Table 1에 사출성형 조건을 요약하였는데, 이때 수지는 증가용 PC인 Lupillon S-2000을 사용하여 해석을 수행하였다. Fig. 3에 사출시험 해석(유동, 보임 및 낙하해석)을 통해 최종적으로 얻어진 온도 분포를 도시하였다.
확대하여 도시한 그림으로 상면의 곡률반경은 증가하고 하면의 곡률반경은 감소함을 확인할 수 있다. 또한 이러한 결과는 이러한 결과는 참고문헌6에서 기술한 성형조건이 불충분하여 동일한 조건에서의 해석이 불가능한 관계로 변형량의 정량적인 비교는 어려웠으나, Fig. 4 (b)에 도시한 관련 실험결과와 비교했을 때 거의 유사한 변형패턴을 보임을 알 수 있다.

Fig. 4 (a) Deformation pattern (CAE analysis)

Fig. 4 (b) Deformation pattern (experiments)

3.2 비구면렌즈의 변형해석

종래에 각광점을 가지하여는 구면렌즈를 다수개 배열하는 방법으로 결정 정도를 항상시키고 있으나, 최근 들어 광학기기의 고정도화, 소형화 및 경량화의 실현을 위해 비구면 렌즈의 사용이 점차적으로 증가하고 있다. 비구면 렌즈는 구면렌즈에서 발생하는 수차(aberration)를 감소시킴으로써 광학적 정도를 항상시키고, 광학소자의 사용을 대체함으로써 얻어지는 경량화 효과 등의 장점이 있는 반면, 고 난이도의 가공 및 성형기술이 요구된다.

본 연구에서는 양면 비구면으로 구성된 소형 광학성을 대응렌즈의 특성평가를 위해 제안된 사전성

Fig. 3 Sectional views of the temperature distribution at the end of cooling stage

Fig. 5 Three-dimensional view of an aspheric lens
Fig. 6 Flow patterns during the filling stage

행 및 변형해석 기법을 적용하였다. Fig. 5에 대면렌즈의 형상을 3차원적으로 도시하였고, 이때의 성형조건은 Table 2에 나열하였다.

Fig. 6에 단계별 유동패턴을 도시하였다. 그림에서 알 수 있듯이 양쪽이 불록한 비구면으로 이루어져 있어 3차원적인 유동의 양상을 보여주는데, 이는 기존의 박막요소로 기초한 접근방법으로는 고려할 수 없었던 내용이다. Fig. 7에 유동, 난각, 보압해석을 거쳐 변형해석을 수행한 결과 얻어진 렌즈 단면의 최종 변형 형상을 도시하였다.

Table 2 Injection molding conditions for an aspheric lens

<table>
<thead>
<tr>
<th>Items</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melt temperature (°C)</td>
<td>280</td>
</tr>
<tr>
<td>Mold temperature (°C)</td>
<td>130</td>
</tr>
<tr>
<td>Injection time (sec.)</td>
<td>2.0</td>
</tr>
<tr>
<td>Packing time (sec.)</td>
<td>4.0</td>
</tr>
<tr>
<td>Cooling time (sec.)</td>
<td>14.0</td>
</tr>
</tbody>
</table>

4. 결론

이상으로 본 연구에서는 경밀 광학 렌즈의 특성 평가를 위해 염재요소를 사용한 사출상형 및 후변형해석에 관한 연구를 진행하였다. 이를 위해 염재요소를 사용하여 유동, 보압 및 난각과정의 해석을 수행하고, 이때 얻어진 결과로부터 금형내의 변형속도와 이형 후의 변형해석을 수행하기 위한 제한 연구를 수행하였다. 제안된 방법을 적용하여 경밀 렌즈의 사출상형 및 변형해석을 수행하였고, 계산된 렌즈의 변형패턴이 실험결과와 유사한 패턴을 보임을 확인할 수 있었다. 이러한 연구결과로부터 기존의박막요소는 접근할 수 없었던 경밀 광학 렌즈의 유동특성 및 그에 따른 제품의 성능 예측이 가능한 것으로 판단되며, 이를 바탕으로 적절한 금형설계변수 및 공정조건의 선정에 활용될 수 있을 것으로 기대된다.

참고문헌