The Evaluation of Thin Pressure Vessel’s Internal Defects by Laser Shearography

Kyoung-Young Jhang (Division of Mech. Eng., Hanyang Univ.), Seo-Weon Chang (Graduate School, Hanyang Univ.), Min-Gwan Hyun (Graduate School, Hanyang Univ.)

ABSTRACT

Internal defects of thin pressure vessel used in the power plants or the chemical plants may be created and grow due to corrosion or creep fatigue to reduce the strength and cause critical failure during operation. Therefore it is very important to detect this defect at the early stage. For this purpose, non-destructive, non-contact and highly sensitive method should be considered for on-line application. In this paper, a laser shearographic interferometer is applied to inspect circular defects and notch defects existed inside of thin pressure vessel under the presence of pressure up to 3 times of atmospheric pressure. The influences of the defect shape and size as well as the internal pressure to the characteristic pattern in the shearography fringe are investigated, and the quantitative evaluation of the defect size is tried. Also the experimental results are compared with the destructive test results to show the applicability of this method to the quantitative evaluation of internal defects in the thin pressure vessel.

Key Words: Laser Shearography (레이저 전단 간섭계), Pressure Vessel (압력용기), Internal Defect (내부결함), Reliability (신뢰성)
본 연구에서는 수정 대상을 압력 용기로 하여 결합의 형태, 방향, 길이, 길이와 같은 인자와 특성
조건에 따른 여러 가지 결합 평가의 데이터들을 그
래프로 나타내며 현장에서 적용 가능한 결합의 성
형적인 분석을 시도하였다. 압력용기는 원자력 발
전소나 화학공장에서 많이 사용되는 보편적인 무게
로 사용 중 내부 부식 등의 원인으로 인한 결합으
로 구조적 강도나 안전에 저영적인 문제를 야기할
수 있다. 따라서 인공적으로 제작한 내부 결합을
Shearography를 이용해 점검적 정밀성으로 검증함
으로써 본 방법의 산업적 활용도를 높이고 적용의
t당성을 검증한다.

2. Shearography의 기본 원리

2.1 스펙클 이론

Fig. 1에서 보듯 레이저를 폐관에 조사하고 이
를 CCD 카메라로 이미지를 얻었을 때 나타나는 경
고 와 작고 볼록한 반점들을 의미한다. 이는 간
섭성을 갖는 레이저가 물체에 조사되었을 때 조사
된 물체의 표면이 레이저 광선에 비해 상당히 거친
기 때문인데 난반사가 있거나 난반사된 빛을 사이
에서 간섭현상이 일거나 경우 작은 반점들이 나
타나는데 이러한 점들을 스펙클이라고 한다. 스펙
클은 하나 하나가 그 입자의 특정 점과 1:1로 대응한
d는 특정 배수에 동시에 발생하게 되면 스펙클 분
포도 함께 바뀌게 된다.

Fig. 1 Speckle Formation

2.2 스펙클 간섭무늬 형성

스페클은 물체 표면에서의 정보를 나타내고,
Shearography 심도는 이러한 스펙클 패턴의 정보
를 이용하여 물체 표면의 변형을 측정한다. 변형
변위는 변형전과 변형후의 스펙클 패턴이 다른 이미지와
차이되어 인지되는 프린트 패턴을 통해 얻을 수 있
d. 변형 전후의 스펙클 정보 각각은 정보만
을 기록한 것이지만, 두 정보의 이미지 처리 과정
과 양자각을 이론을 통하여 각 스펙클의 위치정보를
얻을 수 있고 얻어진 위치 정보를 이용하여 수치
적으로 정량화할 수 있다. 따라서 물체의 변형 또
는 변위 정보를 측정하기 위해서는 물체의 변형전
과 변형후의 스펙클 패턴이 필요한 것이다.

Fig. 2 Speckle theory

이 과정은 수학적으로 표현은 하면 다음과 같다.
(1) 변형 전후의 정보 간에 관계된 간

\[I_{\text{before}} = I_o + 2\sqrt{I_o I_o \cos \phi} \]

\[I_{\text{after}} = I_o + 2\sqrt{I_o I_o \cos (\phi + \Delta \phi)} \]

여기서 \(I_o \)은 거주점의 강도, \(I_o \)는 물체에서 반사
되어 오는 물체의 강도, \(\phi \)는 기존점과 물체범위
서의 위상차를 나타내고, \(\Delta \phi \)는 물체의 변형에
해 변환된 위상차를 나타낸다.

\[I = |(I_{\text{before}} - I_{\text{after}})| = 2|I_o I_o| \cos \phi \cos (\phi + \Delta \phi)] \]

\[= 4|I_o I_o| \sin^2 \frac{\phi}{2} \sin^2 \frac{\Delta \phi}{2} \]

(3) 방의 정도 분포는 스펙클 패턴의 변형전과 변
형후의 이미지 차가 심한 부분이 이미지(1)이면 1 값은
양과 음의 값은 변동하여 이는 원은 이미지
상에서 모두 검정색으로 표현되므로 이들 신호의
순서를 줄이기 위해 식(3)처럼 절대값을 취한다.
그

2.3. Shearography의 계산법

Shearography에서는 레이저에서 나온 빛이 물체
면에 맺고 조사된 후 반사되어 다시 각 분할기에
이해 동일한 CCD 카메라의 상세에 맺히고, 나머지
하나는 원이 있는 거울에서 반사되어 다시 각 분할
기에 의해 동일한 CCD 카메라의 상세에 맺히게 된다.
CCD 카메라의 상세에 비추어진 두 개의 빛 즉
Object Beam과 Reference Beam에 의해 Fig. 3에서
보듯이 CCD 카메라 상면의 두 개의 CCD Array 가
서로 보장과 소멸이라는 레이저의 간섭효과가 발생
한다. 이 때 일어나는 물체표면의 스케일 강도분포
를 스케일 페턴이라고 한다. [5] 또한 Fig. 3에 보
듯이 양에 있는 광이 경사면을 주면 광이 머진 광
줄에서 반사된 광은 기울어지지 않은 광줄에서
반사된 광으로서 수평으로 전단되어 상면에
넓게 묻힌다. 이렇게 변형된 물체의 정보를 가진
스케일 페턴과 물체에 변형을 준 후 위치와 같은
방식으로 저장한 스케일 페턴을 점차적으로 차감하
게 되면 간섭무늬가 형성된다. 이는 간섭무늬의 선
명도와 형제가 변위, 전단각의 경사면에 영향을
받아 결정된다는 것을 의미한다. [6]

2.4 변형변위 측정 원리

변형경과 변형후의 빌이 각도는 식 (1) (2)와 같
고 프란지 페턴은 식 (1) (2)의 차로서 얻을 수 있
다. 위상 변화량 ∆ϕ는 변형 전후의 평면도의 사
(1)와 K(Sensitivity Vector)의 곱으로 얻어진다. 즉

\[\Delta \phi = K \cdot L \]

(4)

직경변화는 (d₁, d₂)을 대입하고 K 값을 평균
치로 정리하면,

\[\Delta \phi = \frac{2\pi}{\lambda} (1 + \cos \theta)(d_1 - d_2) \]

(5)

테이블 금속 전개를 이용해 (d₁, d₂)을 나타내면
전단각의 변위를 평판방향에 의한 전단량 ∆x 와는 다음과 같은 관
계를 갖는다.

\[\Delta d = d_1 - d_2 \approx \frac{\partial d}{\partial x} (\Delta x) \]

(6)

\[\Delta \phi = \frac{2\pi}{\lambda} (1 + \cos \theta)(\Delta x) \frac{\partial d}{\partial x} \]

(7)

으로 표현된다. 따라서 전단 전단 간섭계에서
여기는 간섭무늬는 전단방향에 대한 변위의
1차 미분 형태로 얻어진다. 이는 변형률 정보를 나
타낸다. 이런 특성으로 인해 Shearography 는 외란의
영향을 덜 받는다고 할 수 있다.

3. 실험 방법

3.1 시편

Fig. 3 Schematic diagram of shearography

Fig. 4 Specimen 1 with 4 kinds of circular defects of
different diameter and depth.

Fig. 5 Real image of circular defects

설명에 사용된 알약용기가 제조된 산업 연장에
서 가장 보편적으로 사용되고 있는 스테인레스이며.
3.2 실험 방법
본 실험에서는 독일 Ettemeyer 사의 Shearography 시스템을 사용하였다. 장학대비를 사용하여 외관을 최소화하였으며 변형이 면의 방향으로만 일어날 수 있게 하여 투과 고정대로 구속하였다.
압력 응기의 변형을 측정하기 위해 절소 가스를 사용해 내부를 1 kgf/cm², 2 kgf/cm², 3 kgf/cm²으로 늘리고 실험하였다. Raju&Newman의 계산식으로 응력 확대 계수를 구해보면 이 값은 일반적인 강체의 K_c에 비해 대규모 작은 값으로 가해져 압력응기에서 압력이 경합의 전반에 영향을 주지 않는다고 볼 수 있다.

4. 실험 결과 및 고찰
4.1 프린지 패턴 분석 결과
Shearography를 이용한 결합 경합의 경합은 전단량 및 가해지는 압력에 따라 영향이 많으며, 경합점의 경합을 위해서는 이 두 조건에 대해 적절한 조건을 정하여 보다 정밀하고 쉽게 경합의 경합점자를 알 수 있도록 한다. Fig. 6, 7에서 볼 수 있듯이 전단량이 클수록, 압력이 커질수록 프린지의 개수가 많아지고 선행도가 높아짐을 알 수 있다. 또한 프린지의 개수나 선행도는 경합의 값이나 값에 비례함을 알 수 있다.

Fig. 7 Fringe patterns of circular defects in shear 2 cm

Fig. 9 Differential image of circular defect #1

Fig. 8 Fringe pattern of circular defect #1

Fig. 6 Fringe patterns of circular defects in shear 1 cm
는 최소값과 최대값의 변화를 나타내게 된다. Fig. 9의 두 변곡점 사이의 값이 겹합의 전위로 위 설명에서는 22.1 mm로 측정되었다. 압력 유지를 절
단하여 확인한 실제 겹합의 전위는 20.0 mm으로 비교적 정확하게 얻는것을 확인할 수 있다.

위의 기법으로는 겹합의 가로, 세로 길이의 화인은 가능하지만 겹합의 두께 정보는 얻을 수 없다.
따라서 본 연구에서는 두께 정보를 얻기 위해 변형
물의 최소값과 최대값 사이의 기울기인 Peak Value
값을 이용하였다. Table 1, 2에서 같은 면적을 갖는
결합 1과 결합 2, 결합 3과 결합 4의 하중에 따
른 Peak Value를 비교하면, 두께가 같은 결합 1, 2,
4가 각각 결합 1, 3의 Peak Value보다 됨을 알 수
있다. 따라서 두께가 길이수록 결합부위에서 민감하게 반응함을 알 수 있다.

Table 1 PV value of circular defects in shear 1 cm.

<table>
<thead>
<tr>
<th>No.</th>
<th>1kGf/ct</th>
<th>2Gf/ct</th>
<th>3Gf/ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.145</td>
<td>0.276</td>
<td>0.409</td>
</tr>
<tr>
<td>2</td>
<td>0.428</td>
<td>0.537</td>
<td>0.671</td>
</tr>
<tr>
<td>3</td>
<td>0.176</td>
<td>0.316</td>
<td>0.566</td>
</tr>
<tr>
<td>4</td>
<td>0.176</td>
<td>0.331</td>
<td>0.467</td>
</tr>
</tbody>
</table>

Table 2 PV value of circular defects in shear 2 cm.

<table>
<thead>
<tr>
<th>No.</th>
<th>1kGf/ct</th>
<th>2Gf/ct</th>
<th>3Gf/ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.224</td>
<td>0.451</td>
<td>0.667</td>
</tr>
<tr>
<td>2</td>
<td>0.608</td>
<td>0.811</td>
<td>1.110</td>
</tr>
<tr>
<td>3</td>
<td>0.220</td>
<td>0.415</td>
<td>0.566</td>
</tr>
<tr>
<td>4</td>
<td>0.211</td>
<td>0.424</td>
<td>0.631</td>
</tr>
</tbody>
</table>

5. 결론

본 연구를 통해 Shearography를 이용한 압력응
기 내부 결합의 검출 가능성을 확인할 수 있었다.
또한 정량적으로도 응력의 최대 결합점에서 변외의
최대점이 발생하는 것을 이용하여 최대 변위점 사
이의 거리를 측정하는 방법으로 구한 결합의 크기
가 실제의 크기에 잘 맞음을 알 수 있었다.

결합 두께가 길어질수록 결합부위에서 민감하게 반
응하여 Peak Value 값이 커지는 경향을 확인할 수
있었다. 두께의 정량적 분석은 상당히 많은 반복성
과 데이터 분석 과정이 필요할 것으로 사료된다.
또한 본 연구에서 수행했던 완형 결합뿐만 아니라
부식, 곡고 같이 더욱 복잡한 형태의 열화에 대한
더 많은 연구가 필요하다.