MR 센서와 PIC를 이용한 비접촉식 정밀 유량계 개발에 관한 연구

이승희(부산대 대학원 메카트로닉스협동과정), 이민철(부산대 기계공학부),
고석조(동의공업대학 기계시스템계열), 장용석((주)세일세래스 기술연구소),
최문호((주)세일세래스 기술연구소)

A Study on Development of a Noncontact Precision Flow-meter Using MR Sensor and PIC

S. H. Lee’(Interdisciplinary Program in Mechatronics, PNU), M. C. Lee(Mech. Eng. School, PNU),
S. J. Go(Division of Mechanical Engineering, Dongeui Institute of Technology),
Y. S. Jang(SEIL SERES CO., LTD.), M. H. Choi(SEIL SERES CO., LTD.)

ABSTRACT

A flow-meter and its measurement controller was developed for a hydraulic system. This study, for development of positive displacement flow-meter, consist of PIC(Peripheral Interface Controller) controller with MR(Magneto-resistive) sensors. This flow-meter is used valve position indicator for valve control system by hydraulic. The MR sensors are used for the rotation of OVAL gear that detecting device. In the ship environments, consideration that necessary explosive proof. Thus electro device or electro flow-meter needs explosion design for electric circuit. We designed noncontact type flow-meter and evaluated the safety and measuring abilities.

Key Words : MR Sensor(자기센서), PIC(Peripheral Interface Controller), flow-meter(유량계), noncontact(비접촉), Intrinsically safety(분리안전), explosion(발폭)

1. 서론

유량계는 산업 전반에서 그 용도에 따라서도 다양하게 사용되고 있다. 유량계의 종류는 유체의 종류와 조건에 따라 크게 질량식, 용적식, 압력식과 초음과 유량계로 나뉘어 진다 [1]. 이들 유량계는 즉, 정량리가 각각 다르고 정확도, 측정범위 등이 달라
유량계측 목적이, 유체의 종류, 요구되는 정확도, 측정범위, 경제성이 등을 고려함으로써 가장 적합한 유량계를 선정하여야 한다. 선박의 경우에도 다양한 유량계가 사용되고 있으며, 배관은 구성하고 있는 배관의 경우에는 개폐 상태를 표시하기 위해 유압
시스템용 용적식 유량계가 사용되고 있다. 특히, 선
박은 일반 기계 장치와는 달리 환경적 위험성과 특
수성 때문에 선박의 안전을 최우선으로 해야 한다.
따라서 선박에 전자장치가 전자식 유량계 등을 설치할 경우에는 방폭 회로설계를 고려해야 한다.

선박에 사용되는 용적식 유량계는 계량형 내부의
물체적을 정밀 측정하는데 적합하다. 용적식 유량
계의 종류에는 측정 대상에 따라서 액체유형과 기체유
형이 있고 측정 방식에도 따라서 오방 기어식 또는 비리
암 기어식, 토너桷 폼스톤식, 무프식, 슬식, 박식
등이 있다 [2,3]. 비접촉 방식인 초음과 유량계의 경우
에는 전과 시간차압을 이용하여 유량을 측정하게 된다. 여기서 유량 측정 시 부가적인 요인이 이용하므로 유
량 속도 초음파를 교환시키는 입자나 기포가 많으면
측정치가 어려우고 오차범위는 유체 속에 무응하는
입자나 섭이 있는 것이 필요하다. 유체가 가혹하게
측정이 불간다. 이러한 이유로 현장가 적은 유압
시스템과 유압 각종을 만한 사용하는 배관에서 더소
유체의 흐름을 측정하기에는 어려움이 있다는 단점
을 가지고 있다.

본 연구에서는 전자소프트가 낮은 PIC 마이크로프
로게시와 MR(Magnetore sistive) 센서를 사용함으로
서 용적식 유량계인 오일 기어를 사용하는 일반적인
P.D. meter(Positive Displacement Flow-meter)를 설계
하여 유압 시스템에서 제작미소유량 측정 문제를
해결하고 성능의 위험 구역에 실현할 수 있는 안전
성을 갖춘하는 비전촉식 정밀 용적식 유량계를 개발
하고자 한다. 이를 위해서는 먼저 기기의 예제 측
정용 미소유량계인 용적식 유량계를 설계 개발하고,
개발된 유량계에 대한 성능 실험을 통해서 그 측정
능력을 평가하고자 한다.

2. 비전촉 정밀 용적식 유량계의 설계

2.1 원격 브레이제어 시스템

 벨크, LNG와 같은 센서의 경우에는 대량의 화물
이송을 측정해야 하므로 이 태에 오리가스(orelice)
나 피토튜브(pitot tube) 같은 외부식 유량계가 사용
되어야 하고, 소형 유압 시스템의 유량을 측정하기
위치는 용적식 유량계, 비전촉식 유량계의 사용이
적합하다. 여기서, 용적식 유량계는 유체의 흐름에
따라 회전각이 일정한 유체를 구분하여 계량함으로
써 유량을 측정하는 것으로 유체밀도에 관계없이 제
작된 유량을 측정할 수 있는 특징을 가지고 있다. 그리
고, 구조가 간단하고 신뢰성이 높아 현재의 유
지보수가 용이하며, 압력손실도 적고 정밀도도 비교
적 높다. 그러나, 유체에 다른 이물질이 들어있다
의 경우와 유체의 속도변화가 심한 경우에는 측정 정확
도가 떨어지는 단점을 가지고 있다. 비전촉식 방식
으로 사용되는 조종과 유량계의 경우에는 관계가 작
은 유압 시스템과 유량 작동을 만드는 배관
에서 미소 유체의 흐름을 측정하기에는 어려움이 있
다는 단점을 가지고 있다.

최근에는 원격에서의 시스템 관리에 대한 관심
이 증가되고 있으므로 원격에서 벨브의 개체 상태
를 인지할 수 있도록 하기 위해서 본 연구에서는 두
가지의 방법을 고려하였다. 첫 번째 방법은 액체에
이터에 실제로 공급된 유량을 용적식 유량계를 이용
해서 측정하는 방법이고, 두 번째 방법은 액체 속
지시계를 설치하여 벨브의 개체 상태를 확인하는 방
법이다. 그러나, 액체 속 지시계를 장착하는 것은
공간상의 배관과 유지 보수측면에서 많은 문제를
기게 된다. 이러한 이유로 유압 시스템 안에 크
기나에서 소형인 용적식 유량계를 설치함으로써 원
격에서도 쉽게 벨브의 개체 상태를 인지할 수 있도
록 하고자 한다.

따라서 본 연구에서는 MR 센서와 용적식 유량계

Fig. 1 Block diagram of Valve Remote Control System

Fig. 2 Block diagram of Flow-meter model

Fig. 3 The developed flow-meter model
2.2 제어회로부의 설계

선택서는 환경 조건은 욕설에서의 해수의 다른 양상을 가진다. 선택서는 그림 1에서와 같이 안전구역과 위험구역으로 나눌 수 있으며, 위험 구역에 들어가기 전에는 전자기기들은 전류 요소를 제한적으로 갖추어야 한다. 위험구역에서의 전류류도 절소하기 위해서 본 연구에서는 제어회로 모양이 가능한 MICROCHIP 사의 PIC 16F874와 Honeywell 사의 MR 센서를 이용하여 제어회로부 설계 제작하였다. 그림 4는 제어회로부의 전류로도를 나타낸다.

전원부는 DC 24V를 입력받아 5V로 정류하여 전압을 출력도록 설계되어 있다. 위험구역에 설치되는 전동력기로 효율성을 높이기 위하여 스위칭 레귤레이터를 사용하고 있으며 레귤레이터의 고장시 2부의 제어범위로 전압을 차단하여 위험요소를 제거할 수 있도록 설계되어 있다.

신호 출력부는 CMOS Photo Relay인 AQV234를 이용하여 전원 라인에 OPEN/CLOSE 신호를 출력할 수 있도록 설계하였다. DC 24V가 입력되고 PIC에 의해서 Photo Relay에 신호가 가해지면 두 개의 라인 중 하나의 전원 인력선이 되고 다른 신호 출력선이 되어 볼브의 OPEN 신호나 CLOSE 신호를 출력하게 되어 있다.

센서부에 사용된 MR 센서는 Bipolar 형 센서로 자석의 N극 및 S극에 반응하여 스위칭 작동을 한다[4]. 2개의 MR 센서가 가로에 의하여 회전수지는 자석을 강화하도록 되어 있으며 자석이 MR 센서가 인지할 수 있는 범위에 들어오면 스위칭 작용을 통해 PIC의 입력 단자로 전압을 출력하도록 설계되어 있다. 또 MR 센서의 1개당 소비전류가 7mA가 소모되며 반면 광장의 전류선호는 4~20mA이므로 소비 전류의 양을 극복하기 위하여 MR 센서의 전원을 PIC의 출력단에 하여 필름으로 공급하도록 설계되어 있다.

제어부 및 표시부는 EEPROM 및 Flash Program Memory가 내장되어 있는 MICROCHIP 사의 40PIN 8-Bit CMOS FLASH micro-controller인 PIC 16F874를 MPU로 사용하였다. 외부 인터럽트 단자를 통해 MR 센서로부터 들어오는 펄스를 받으면 하드웨어 프로그램에 의해 신호를 산출하여 3-Digit LCD에 딥바의 개별 설정을 Percent로 Display하게 프로그램 되어 있으며, PWM 단자를 통해 아날로그 신호인 4~20mA 신호를 출력할 수 있도록 프로그램 되었다. PWM 출력 단자는 최고 10-Bit까지 분해능이 가능하다.
이 PWM 출력단위에 180와, 47밀의 체비셔터가 조합되어 0.08밀의 단위로 전류를 출력할 수 있다.
표 1은 본 연구에서 개발된 비전축성 정밀 용적식 유량계의 설계 사양이다. 일반적인 대형 유량계와는 달리 최대 유량이 분당 5리터 이상이다.

3. 실험

3.1 Oval 기이의 물적 계산

유압 시스템의 작동 유압은 150바이어, 압축에 이기는 (주)세일세게어 자사 로얄인 HQ 100을 사용하였다. 작동은 도는 간이이다. 밸브가 개폐되는 동안에 유량계의 까지 휘어지는 대략 130 ~ 140회이다. 개발하라는 용적식 유량계의 기이이는 다음 식들 이용하여 이론 출력률을 산출하였다.

 밸러시(bellow)가 없이 완전히 터지지 않았다고 가정할 때 1회전당의 이론 출력유량은 \(V_n \)는 다음 식으로 표시된다[5].

\[
V_n = \frac{\pi}{8} \left(d_1^2 - d_2^2 \right) h
\]

\(d_1 \) : 치환지름 (mm)
\(d_2 \) : 치환지름 (mm)
\(h \) : 치족 (mm)

일본 무브(involute) 기이의 경우에는 실제 밸러시가 없이적으로 복잡한 식이 되며, 장비의 표준 일본 무브 차원 이가 기이의 근사식은 다음과 같다[5].

\[
V_n = 2 \pi m^2 z h
\]

\(m \) : 모듈 (mm) : 2.25
\(z \) : 치수 : 9
\(h \) : 치족 (mm) : 4.8 (mm)

치지의 표준 일본 무브 차원 이가 기이의 근사식으로 해서 적용할 때 1.5cc가 되지 않으므로 본 연구에서는 치족 는 5.238mm로 산정하여 1.5cc의 출력 유량이 되도록 설정 설계하였다. 그리고, 다양한 혜천 에너지에 대해서도 개발한 유량계를 적용하기 위해서 PIC 프로그램에서 소프트웨어적으로 보정하도록 설계하였다.

3.2 성능 실험

본 연구에서는 PIC 마이크로프로세서와 MR 센서 그리고 오일 기름을 사용한 비전축성 정밀 용적식 유량계 개발하였다. 개발된 유량계에 대한 성 능 평가를 위해 압축에이터의 유량에 따른 밸브 개 폐 상태와 출력 전류의 특성 실험을 수행하였다.

<table>
<thead>
<tr>
<th>Table 1 Specification Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flow</td>
</tr>
<tr>
<td>Max Working Pressure</td>
</tr>
<tr>
<td>Fluid</td>
</tr>
<tr>
<td>Viscosity Range</td>
</tr>
<tr>
<td>Temperature Range</td>
</tr>
<tr>
<td>Filtration</td>
</tr>
<tr>
<td>Normal Dia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Output Current Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>81</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

표 2는 실험에 의해 얻은 출력저류 값으로 기존 점 유률과 주성립의 오차가 미소함을 알 수 있다. 따라서 본 연구에서 제작된 유량계의 성능이 우수함을 입증할 수 있다.

4. 결론

본 연구에서는 필립스가 납은 PIC 마이크로프로세서와 MR 센서를 사용함으로써 용적식 유량계의 오발 기름을 사용하는 일반적인 P.D. meter를 설계하 여 유압 시스템에 급치는 미소유량 측정 문제를 해결하고 실험의 위험 구역에 설계할 수 있는 안전 성을 보장하는 비전축성 정밀 용적식 유량계를 개발하였다. 그리고, 개발된 유량계에 대한 성능 실험을 통해 그 측정 성능은 평가되었다.

참고문헌

2. 일본제생기공업협회, 제장 엔지니어를 위한 유량계 A to Z. 태크하우스, 2002.
5. 이완영, 기계요소설계, 정용간, 1999.