충형공구를 이용한 고정밀 베어링 Rubber seal 및 금형가공에 관한 연구

김도형(전북대원), 김연술(전북대원), 이희권(전북대 TIC), 노상흡(전북대 TIC), 양규석(전북대 기계공학과 공학부)

A Study on Mold Machining for Bearing Rubber Seal by Formed Tool.

ABSTRACT

The formed tool is used to machine the unique shape of rubber seal for geometrical shaping and reduction of cutting time. The bearing rubber seal produced by hot press forming has complex geometry for the complex geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining mold of the seal. In this paper, It is performed for selection of the formed tool to investigate cutting edge wear, cutting force, and surface quality. Also, an efficient high precision machining is proposed on the experiment data.

Key Words : Rubber seal, Formed tool, Tooling, Tooling, CAD (Computer Aided Inspection)

1. 서 론

베어링은 현재 기계설비의 주요 부품으로서 기계 장치의 효율적인 구동을 위한 고정밀 베어링에 있어 서 유형 요인의 포인트와 외부로부터의 이물질을 차단 하기 위한 베어링 리버설은 필수적이다. 이러한 고 정밀 베어링에 사용되는 리버설은 일반적으로 리버 설의 프레임(Frame)를 이루는 보강재와 움푹전을 하는 Lip으로 구성된다1). 최종 리버설은 Hot press 성형에 의해 생성되기 때문에 금형 제작은 고정밀 베어링 리버설의 형상(형상 정밀도)에 가장 큰 영향 을 미친다. 리버설의 형상은 각 부위마다 멀리 스타 린치 병의 매우 복잡한 기하학적 형상은 각기 배때 금형 제작에 있어서 많은 어려움이 있다. 특히, 1개의 금형내에 다수의 캐비터를 갖는 경우, 설계에 의해 가공하기 되면 캐비터 별로 섭유 수축의 회전청을 정지함에 하기 때문에 모형 내 캐비터 간의 위치 정밀도에서 문제가 발생할 수 있다. 보전, 일 반 상용공구인 롤 액두دليل(Ball endmill)이나 클램프 드릴(lat endmill)을 사용할 경우 리버설의 복잡한 기하학적 형상을 정확히 표현하기 어려우에 증선함성을 위한 후처리 작업이 필요하게 된다2), 레이저 가 공, 방전가공, Etching 등의 특수 가공들이 사용되기 도 하지만 생산성과 경제적인 측면에서는 상당한 부 터가 따른다.

이에 본 연구에서는 리버설 형상과 같은 절삭언 (Cutting edge)을 위한 고정밀도의 충형공구(Formed tool)을 이용한 효과적인 금형가공 방법에 대해 연구 한다. 충형 공구를 제작하기 금형을 가공함에 있어 서 다른 유형(Clearance angle)을 가진 충형 공 구에 대해 설계와 설계안의 마모경을 파악하여 분석하고 리버설 금형 가공을 위한 최적의 설계조건 을 찾는다. 그리고 그에 따른 효율적인 금형 가공방 법을 제시한다.

2. 충형공구와 설계조건

본 연구에서 사용된 충형공구는 KORLOY사의 SPMM계열의 충형공구(insert tip)로서 이음막을 60도로 타르게 재료건에 설계를 수행하고 설계를 수행하였다. 설계안을 수정하기 위한 설계경 지의 계약도의 적어 Fig. 1과 Table. 1에 나타나 있
고 설계에 사용된 중형 공구의 형상이 Fig. 2에 보이
한다. 각각 다른 두께를 가진 투명 공구를 제작 한
후 공구 측정은 INUS사의 Rapidform 2002와
CMM(Compact Measuring Machining)을 이용하여
중형 공구의 CAI(Computer Aided Inspection)
을 수행하였다. 수울간(cutting edge)의 둔화를 검사한 결
과 각각 6.318°, 10.8°로 공차에서 크게 벗어나지
않았다.

점착력 측정을 위한 가공 시 노이즈 및 기타 환경
요인을 제거하기 위해 건식 절삭을 하고, 동일한 편
언으로 가공경로를 수립하였다.

![Fig. 1. Schematic apparatus](image)

Table 1 Specifications of experimental apparatus

<table>
<thead>
<tr>
<th>Machine Center</th>
<th>Vertical Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kistler 9257A</td>
<td>8000rpm</td>
</tr>
<tr>
<td>Tool dynamometer</td>
<td>Range: ±5kN</td>
</tr>
<tr>
<td>Resolution: 0.01N</td>
<td></td>
</tr>
<tr>
<td>Charge amplifier</td>
<td>Kistler 5001</td>
</tr>
<tr>
<td>Resolution: 12bit</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 2. Formed tool](image)

Table 2 The mechanical properties of KP4M

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Point (kgf/mm)</td>
<td>65.80</td>
</tr>
<tr>
<td>Tensile Strength (kgf/mm)</td>
<td>75.90</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>> 15</td>
</tr>
<tr>
<td>Reduction if Area (%)</td>
<td>> 40</td>
</tr>
<tr>
<td>Impact Abs. Energy (Joule)</td>
<td>> 60</td>
</tr>
<tr>
<td>Surface Hardness (HRC)</td>
<td>28~34</td>
</tr>
</tbody>
</table>

3. 충형공구 평가 및 최적화

3.1 절삭력과 공구미모

충형 공구의 일반 측정공구와 같은 원리로 절삭
인공이 예상할 수록 절삭력은 적게 정리된다. 절삭
인장단면의 마모가 보다 빠르게 진행된다.

![Fig. 3. Wear shape of formed tool](image)

##
두 가지 종합공구에 대해 동일한 조건에서 동일하게 가공이 진행되며, 더 높은 전단을 가지는 유약 11의 종합공구에서 마모가 더 발라진 것으로 나타났다.

3.2 표면 조도

서로 다른 유약과 가공하는 동일 공구를 사용하여 동일한 조건에서 가공을 수행한 후, 각각의 공구에 대해 가공 간격에 따라 표면 조도를 측정하여 각공구의 평가하였다.

가공공구가 긴 거리에 따라 공구의 마모로 인해 표면의 형태가 왜곡된다고 알려져 있으며, 이는 가공공구의 길이와 가공 공구의 성능에 따라 다르게 나타난다. 가공공구의 길이와 성능에 따라 가공공구의 길이와 가공공구의 성능에 따라 다릅니다.

Table 3. Roughness of the each cutting (Unit:mm)

<table>
<thead>
<tr>
<th>clearance angle</th>
<th>6°</th>
<th>11°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughness (Ra)</td>
<td>2.93</td>
<td>2.69</td>
</tr>
</tbody>
</table>

Table 3은 다른 유약과 가공 공구를 사용하여 가공을 수행한 후, 각각의 케비터의 색별도를 측정한 것이다. 케비터의 색은 KPM의 특성상 표준 조도가 다르게 나타난다. 각 2-5개의 케비터가 공구 후 조도가 왜곡되는 경향을 보였다.

유압 가공시 유약 11의 경우 공구의 마모가 원형의 색별도가 발라 전단력 증가가 이뤄졌으며, 표면도를 고려할 때는 정상 가공에 유리하다.
4. 가공정보 생성 및 가공

설계 끝에 계획을 갖는 리버설 금형의 가공을 위해 리버설 각 부위의 형상에 적합한 여러 종류의 충형공구가 필요하다. Fig. 6은 실제 리버설 금형에 사용되는 충형공구의 형상이다.

Fig. 6. Formed tools and Rubber seal

4. 결론

리버설 금형 가공을 위해 서로 다른 마무리를 가진 종합공구를 제작하고, 각각의 충형 공구를 사용하여 실제 금형에 사용되는 재료인 K74M을 이용하여 가공을 수행하였다. 결과나, 공구마모, 표면조도를 고려하면,
1) 이미지 6 인 경우, 전사식의 증가량과 공구 마모가 적어 완결 가공이 유지되고,
2) 이미지 11 인 경우에서는 전사식의 증가량이 크고 공구마모가 크니 진행되면서 표면조도를 고려한 완결 가공에 적합하다.
3) 공구마모와 표면조도를 고려하여 충형공구 형상에 따라 2개 이상의 동일 충형공구 선정이 필요하다.

참고문헌

2. 이기우, 노장호, 한성호, 한성호, "전사식 액상 유동 뉴트리커스" 한국정보공학회, 제 17권, 제 5호, pp. 116-123, 2000.
3. 강명종, 김영식, 이동호, "("고속공구"
4. 김정식, 이동호, 김명호, "("고속공구"
5. 김영식, 이동호, 김명호, "("고속공구"
6. 김영식, 이동호, 김명호, "("고속공구"
7. 김영식, 이동호, 김명호, "("고속공구"

Fig. 8. Mold of rubber seal

Fig. 7. NC code for cutting

충형공구로 가공이 이루어질 경우 가공 경로는 z축으로부터 가공공구에 접근하여 헬리스(Helix) 가공을 하게 된다. 따라서 가공이 시작되기 직전 금속 가공공구 공구에 사용되도록 가공공구 고정하는 0.2mm 거리에서 Feed을 충분히 감소시키기 공구에 급속시킨다. 또한 금형의 가공상 환경을 위해 Dwell code(공구입수장치, G00 P200)를 사용하였으며, 설계에 적합한 가공조건은 Fig. 7에 나타나 있다. Fig. 8은 실제 가공된 리버설 금형이다.